Details zu Publikationen

Unit Segmentation of Argumentative Texts

verfasst von
Yamen Ajjour, Wei Fan Chen, Johannes Kiesel, Henning Wachsmuth, Benno Stein
Abstract

The segmentation of an argumentative text into argument units and their nonargumentative counterparts is the first step in identifying the argumentative structure of the text. Despite its importance for argument mining, unit segmentation has been approached only sporadically so far. This paper studies the major parameters of unit segmentation systematically. We explore the effectiveness of various features, when capturing words separately, along with their neighbors, or even along with the entire text. Each such context is reflected by one machine learning model that we evaluate within and across three domains of texts. Among the models, our new deep learning approach capturing the entire text turns out best within all domains, with an F-score of up to 88.54. While structural features generalize best across domains, the domain transfer remains hard, which points to major challenges of unit segmentation.

Externe Organisation(en)
Bauhaus-Universität Weimar
Typ
Aufsatz in Konferenzband
Seiten
118-128
Anzahl der Seiten
11
Publikationsdatum
09.2017
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Theoretische Informatik und Mathematik, Information systems, Angewandte Informatik
Elektronische Version(en)
https://doi.org/10.18653/v1/W17-5115 (Zugang: Offen)