Unit Segmentation of Argumentative Texts
- verfasst von
- Yamen Ajjour, Wei Fan Chen, Johannes Kiesel, Henning Wachsmuth, Benno Stein
- Abstract
The segmentation of an argumentative text into argument units and their nonargumentative counterparts is the first step in identifying the argumentative structure of the text. Despite its importance for argument mining, unit segmentation has been approached only sporadically so far. This paper studies the major parameters of unit segmentation systematically. We explore the effectiveness of various features, when capturing words separately, along with their neighbors, or even along with the entire text. Each such context is reflected by one machine learning model that we evaluate within and across three domains of texts. Among the models, our new deep learning approach capturing the entire text turns out best within all domains, with an F-score of up to 88.54. While structural features generalize best across domains, the domain transfer remains hard, which points to major challenges of unit segmentation.
- Externe Organisation(en)
-
Bauhaus-Universität Weimar
- Typ
- Aufsatz in Konferenzband
- Seiten
- 118-128
- Anzahl der Seiten
- 11
- Publikationsdatum
- 09.2017
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Theoretische Informatik und Mathematik, Information systems, Angewandte Informatik
- Elektronische Version(en)
-
https://doi.org/10.18653/v1/W17-5115 (Zugang:
Offen)