Marius Lindauer
Prof. Dr. rer. nat. Marius Lindauer
Welfengarten 1
30167 Hannover
Prof. Dr. rer. nat. Marius Lindauer
Welfengarten 1
30167 Hannover

In recent years, AI achieved impressive results in different fields, incl. in computer vision, natural language processing and reinforcement learning. These breakthroughs show how AI will influence and change our daily lives, business and even research in many aspects. With the advent of deep learning and also traditional AI methods, such as AI planning, SAT solving or evolutionary algorithms, a multitude of different techniques are available these days. However, applying these techniques is challenging, and even experienced AI developers are faced with several difficult design decisions, making the development of new AI applications a tedious, error-prone and time-consuming task. Therefore, we develop new approaches to increase efficiency in AI application development by reducing the required expert knowledge, improving development time and reducing chances of error. We do this with democratization of AI and social responsibility in mind.

Research Interests

Actually, I'm interested in many topics related to AutoML, machine learning, AI and interdisciplinary applications of these. Here are some selected topics:

  • Green-AutoML
  • Human-centered AutoML
  • Dynamic Algorithm Configuration
  • Generalization of Reinforcement Learning
  • Applications to production or health/medicine

Curriculum Vitae


Zeige Ergebnisse 21 - 40 von 97


Theodorakopoulos, D., Manß, C., Stahl, F., & Lindauer, M. (2023). Green-AutoML for Plastic Litter Detection. in Proceedings of the ICLR Workshop on Tackling Climate Change with Machine Learning
Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H., & Lindauer, M. (2023). AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks.
Zoeller, M., Mauthe, F., Zeiler, P., Lindauer, M., & Huber, M. (2023). Automated Machine Learning for Remaining Useful Life Predictions. in Proceedings of the international conference on Systems Science and Engineering, Human-Machine Systems, and Cybernetics (IEEE SMC) IEEE Xplore Digital Library.
Zöller, M., Lindauer, M., & Huber, M. (2023). auto-sktime: Automated Time Series Forecasting.


Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer, T., Lindauer, M., & Hutter, F. (2022). Automated Dynamic Algorithm Configuration. Journal of Artificial Intelligence Research, 75, 1633-1699.,
Benjamins, C., Raponi, E., Jankovic, A., Blom, K. V. D., Santoni, M. L., Lindauer, M., & Doerr, C. (2022). PI is back! Switching Acquisition Functions in Bayesian Optimization.
Benjamins, C., Jankovic, A., Raponi, E., Blom, K. V. D., Lindauer, M., & Doerr, C. (2022). Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis. Beitrag in Workshop on Meta-Learning (MetaLearn 2022).
Bothmann, L., Strickroth, S., Casalicchio, G., Rügamer, D., Lindauer, M., Scheipl, F., & Bischl, B. (2022). Developing Open Source Educational Resources for Machine Learning and Data Science. in Teaching Machine Learning Workshop at ECML 2022
Deng, D., Karl, F., Hutter, F., Bischl, B., & Lindauer, M. (2022). Efficient Automated Deep Learning for Time Series Forecasting. in Proceedings of the European Conference on Machine Learning (ECML)
Deng, D., & Lindauer, M. (2022). Searching in the Forest for Local Bayesian Optimization. in ECML/PKDD workshop on Meta-learning
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. T., & Hutter, F. (2022). Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. Journal of Machine Learning Research, 23.
Hvarfner, C., Stoll, D., Souza, A. L. F., Lindauer, M., Hutter, F., & Nardi, L. (Angenommen/Im Druck). π BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. in Proceedings of the International conference on Learning Representation (ICLR)
Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Sass, R., & Hutter, F. (2022). SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. Journal of Machine Learning Research, 2022(23).
Mallik, N., Hvarfner, C., Stoll, D., Janowski, M., Bergman, E., Lindauer, M. T., Nardi, L., & Hutter, F. (2022). PriorBand: HyperBand + Human Expert Knowledge. in 2022 NeurIPS Workshop on Meta Learning (MetaLearn)
Mohan, A., Ruhkopf, T., & Lindauer, M. (2022). Towards Meta-learned Algorithm Selection using Implicit Fidelity Information. in ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML)
Moosbauer, J., Casalicchio, G., Lindauer, M., & Bischl, B. (2022). Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution.
Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T., Zhang, B., Nguyen, V., Calandra, R., Faust, A., Hutter, F., & Lindauer, M. (2022). Automated Reinforcement Learning (AutoRL): A Survey and Open Problems. Journal of Artificial Intelligence Research, 74(74), 517-568.,
Sass, R., Bergman, E., Biedenkapp, A., Hutter, F., & Lindauer, M. (2022). DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning. in ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML)


Benjamins, C., Eimer, T., Schubert, F., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2021). CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning. in Workshop on Ecological Theory of Reinforcement Learning, NeurIPS 2021
Biedenkapp, A., Rajan, R., Hutter, F., & Lindauer, M. (2021). TempoRL: Learning When to Act. in Proceedings of the international conference on machine learning (ICML)