Institut
Marius Lindauer
Prof. Dr. rer. nat. Marius Lindauer
Adresse
Welfengarten 1
30167 Hannover
Gebäude
Raum
Prof. Dr. rer. nat. Marius Lindauer
Adresse
Welfengarten 1
30167 Hannover
Gebäude
Raum

In recent years, AI achieved impressive results in different fields, incl. in computer vision, natural language processing and reinforcement learning. These breakthroughs show how AI will influence and change our daily lives, business and even research in many aspects. With the advent of deep learning and also traditional AI methods, such as AI planning, SAT solving or evolutionary algorithms, a multitude of different techniques are available these days. However, applying these techniques is challenging, and even experienced AI developers are faced with several difficult design decisions, making the development of new AI applications a tedious, error-prone and time-consuming task. Therefore, we develop new approaches to increase efficiency in AI application development by reducing the required expert knowledge, improving development time and reducing chances of error. We do this with democratization of AI and social responsibility in mind.

Research Interests

Actually, I'm interested in many topics related to AutoML, machine learning, AI and interdisciplinary applications of these. Here are some selected topics:

  • Green-AutoML
  • Human-centered AutoML
  • Dynamic Algorithm Configuration
  • Generalization of Reinforcement Learning
  • Applications to production or health/medicine

Curriculum Vitae

Publications

Zeige Ergebnisse 61 - 80 von 97

2020


Lindauer, M., & Hutter, F. (2020). Best Practices for Scientific Research on Neural Architecture Search. Journal of Machine Learning Research, 21. https://arxiv.org/abs/1909.02453
Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., & Hutter, F. (2020). Learning Step-Size Adaptation in CMA-ES. in T. Bäck, M. Preuss, A. Deutz, M. Emmerich, H. Wang, C. Doerr, & H. Trautmann (Hrsg.), Parallel Problem Solving from Nature – PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I (S. 691-706). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12269). Springer. https://doi.org/10.1007/978-3-030-58112-1_48

2019


Biedenkapp, A., Bozkurt, H. F., Hutter, F., & Lindauer, M. (2019). Towards White-box Benchmarks for Algorithm Control. https://arxiv.org/abs/1906.07644
Eggensperger, K., Lindauer, M., & Hutter, F. (2019). Pitfalls and Best Practices in Algorithm Configuration. Journal of Artificial Intelligence Research, 64, 861-893. https://doi.org/10.1613/jair.1.11420
Fuks, L., Awad, N., Hutter, F., & Lindauer, M. (2019). An evolution strategy with progressive episode lengths for playing games. in S. Kraus (Hrsg.), Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 (S. 1234-1240). (IJCAI International Joint Conference on Artificial Intelligence). AAAI Press/International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2019/172
Lindauer, M. T. (2019). Automated Algorithm Selection –Predict which algorithm to use!. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjd94W5k9TqAhWM_KQKHVbABogQFjAAegQIARAB&url=http%3A%2F%2Fceur-ws.org%2FVol-2360%2Fpaper2Keynote.pdf&usg=AOvVaw0h4cvTGwQg-XD97fhGaytv
Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Marben, J., Müller, P., & Hutter, F. (2019). BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters. https://arxiv.org/pdf/1908.06756
Lindauer, M. T. (2019). Hands-On Automated Machine Learning Tools: Auto-Sklearn and Auto-PyTorch. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwibqKyPlNTqAhUwMewKHR7PC0oQFjAAegQIARAB&url=https%3A%2F%2Fwww.automl.org%2Fevents%2Famir19-key-note-and-automl-hands-on%2F&usg=AOvVaw1ggAEDpu7zdnlhnRtLdGQD
Lindauer, M., van Rijn, J. N., & Kotthoff, L. (2019). The algorithm selection competitions 2015 and 2017. Artificial intelligence, 272, 86-100. https://doi.org/10.1016/j.artint.2018.10.004
Lindauer, M., Feurer, M., Eggensperger, K., Biedenkapp, A., & Hutter, F. (2019). Towards Assessing the Impact of Bayesian Optimization’s Own Hyperparameters. in DSO Workshop at IJCAI https://arxiv.org/abs/1908.06674
Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., Urban, M., Burkart, M., Dippel, M., Lindauer, M. T., & Hutter, F. (2019). Towards Automatically-Tuned Deep Neural Networks. in Automated Machine Learning https://doi.org/10.1007/978-3-030-05318-5_7

2018


Biedenkapp, A., Marben, J., Lindauer, M., & Hutter, F. (2018). CAVE: Configuration Assessment, Visualization and Evaluation. in P. M. Pardalos, R. Battiti, M. Brunato, & I. Kotsireas (Hrsg.), Learning and Intelligent Optimization (S. 115-130). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11353 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-05348-2_10
Eggensperger, K., Lindauer, M., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2018). Efficient benchmarking of algorithm configurators via model-based surrogates. Machine learning, 107(1), 15-41. https://doi.org/10.1007/s10994-017-5683-z
Eggensperger, K., Lindauer, M., & Hutter, F. (2018). Neural Networks for Predicting Algorithm Runtime Distributions. in J. Lang (Hrsg.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (S. 1442-1448). AAAI Press/International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2018/200
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. T., & Hutter, F. (2018). Practical Automated Machine Learning for the AutoML Challenge 2018. https://www.tnt.uni-hannover.de/papers/data/1407/18-AUTOML-AutoChallenge.pdf
Lindauer, M., Hoos, H., Hutter, F., & Leyton-Brown, K. (2018). Selection and Configuration of Parallel Portfolios. in Handbook of Parallel Constraint Reasoning (S. 583-615). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-63516-3_15
Lindauer, M. T., van Rijn, J. N., & Kotthoff, L. (2018). The Algorithm Selection Competition Series 2015-17. https://arxiv.org/abs/1805.01214v1
Lindauer, M., & Hutter, F. (2018). Warmstarting of Model-Based Algorithm Configuration. in 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (S. 1355-1362). (Proceedings of the AAAI Conference on Artificial Intelligence). AAAI Press/International Joint Conferences on Artificial Intelligence. https://arxiv.org/abs/1709.04636v3
Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., & Hutter, F. (2018). A case study of algorithm selection for the traveling thief problem. Journal of heuristics, 24(3), 295-320. https://doi.org/10.1007/s10732-017-9328-y

2017


Biedenkapp, A., Lindauer, M., Eggensperger, K., Hutter, F., Fawcett, C., & Hoos, H. H. (2017). Efficient Parameter Importance Analysis via Ablation with Surrogates. in Proceedings of the AAAI Conference on Artificial Intelligence https://doi.org/10.1609/aaai.v31i1.10657