InstituteStaff
Tanja Tornede
Tanja Tornede
Address
Appelstr. 9A
30167 Hannover
Building
Room
Tanja Tornede
Address
Appelstr. 9A
30167 Hannover
Building
Room

Research Interests

My research interest are driven by the desire to create a more sustainable and worth living world for everyone.  Therefore, i am interested in research on Green AutoML, which focuses on developing environmentally friendly and energy-efficient AutoML. Furthermore, I am interested in AutoML for Predictive Maintenance, which enables industrial domain experts to apply machine learning, e.g. for Remaining Useful Lifetime estimation, without advanced knowledge of machine learning. 

Curriculum Vitae

  • Working Experience

    2023 - Present
    Doctoral Researcher, Leibniz University Hannover

    2019 - 2023
    Doctoral Researcher, Paderborn University

  • Education

    2019 - Present
    Ph.D. Student (Dr. rer. nat) supervised by Prof. Dr. Eyke Hüllermeier, Paderborn University

    2015 - 2018
    Master of Science, Computer Science, Paderborn University

    2012 - 2015
    Bachelor of Science, Computer Science, Paderborn University

Publications


2023


Tornede, A., Gehring, L., Tornede, T., Wever, M., & Hüllermeier, E. (2023). Algorithm selection on a meta level. Machine learning, 112(4), 1253-1286.

doi.org/10.1007/s10994-022-06161-4

Tornede, T., Tornede, A., Fehring, L., Gehring, L., Graf, H., Hanselle, J., Mohr, F., & Wever, M. (2023). PyExperimenter: Easily distribute experiments and track results. Journal of Open Source Software.

doi.org/10.21105/joss.05149


2021


Tornede, T., Tornede, A., Wever, M., & Hüllermeier, E. (2021). Coevolution of Remaining Useful Lifetime Estimation Pipelines for Automated Predictive Maintenance. In Proceedings of the Genetic and Evolutionary Computation Conference

dl.acm.org/doi/pdf/10.1145/3449639.3459395

Tornede, T., Tornede, A., Hanselle, J., Wever, M., Mohr, F., & Hüllermeier, E. (2021). Towards Green Automated Machine Learning: Status Quo and Future Directions.

arxiv.org/abs/2111.05850


2020


Hoffmann, M. W., Wildermuth, S., Gitzel, R., Boyaci, A., Gebhardt, J., Kaul, H., Amihai, I., Forg, B., Suriyah, M., Leibfried, T., Stich, V., Hicking, J., Bremer, M., Kaminski, L., Beverungen, D., Heiden, P. Z., & Tornede, T. (2020). Integration of Novel Sensors and Machine Learning for Predictive Maintenance in Medium Voltage Switchgear to Enable the Energy and Mobility Revolutions. Sensors, 20(7), [2099].

doi.org/10.3390/s20072099


2019


Tornede, T., Tornede, A., Wever, M., Mohr, F., & Hüllermeier, E. (2019). AutoML for Predictive Maintenance: One Tool to RUL them all. In IoT Streams 2020: IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning

link.springer.com/chapter/10.1007/978-3-030-66770-2_8