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Abstract

Although Reinforcement Learning (RL) has shown impressive results in games
and simulation, real-world application of RL suffers from its instability under
changing environment conditions and hyperparameters. We give a first impression
of the extent of this instability by showing that the hyperparameters found by
automatic hyperparameter optimization (HPO) methods are not only dependent
on the problem at hand, but even on how well the state describes the environment
dynamics. Specifically, we show that agents in contextual RL require different
hyperparameters if they are shown how environmental factors change. In addition,
finding adequate hyperparameter configurations is not equally easy for both settings,
further highlighting the need for research into how hyperparameters influence
learning and generalization in RL.

1 Introduction

Even though reinforcement learning (RL) has shown considerable progress in many areas like
game playing [33, 4], robot manipulation [20], traffic control [2], chemistry [36] and logistics [21],
deploying RL in application remains challenging. This is especially in high-stakes domains like
autonomous driving and healthcare where failures can be fatal. One explanation is that the design
of modern RL agents does not prioritize generalization, making them susceptible to even small
variations in their environment or hyperparameters [15, 17, 23, 24].

Different alterations of an environment and the impact on the agents’ performance can be modelled
and studied e.g. via contextual RL. For instance, in OpenAI’s pendulum environment [6] the task is
to exert force upon a pendulum such that it balances upright. The other factors defining this process,
often physical attributes like the length of the balancing pole, its mass or even the magnitude of
gravity, can be chosen as context features. By varying context features during training and testing we
are able to represent different instances of the same environment, see Figure 1. This will challenge
the agent to perform well across environmental changes and ultimately gives a better estimate of its
robustness and generalization capabilities, a step closer to reliable real-world application of RL [5].

While cRL opens many new research directions, it also introduces more variables into an already
brittle RL pipeline. From the perspective of a RL practitioner, this can further complicate the process
of finding an agent that solves a given task - and indeed we easily show it does. Our research
hypotheses are:

1. Hyperparameter configurations for RL agents in the contextual setting are very sensitive to
even small changes in the task.

2. Well-performing hyperparameter configurations for RL agents depend on whether context
features are explicitly provided or not.
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We study validity of these research hypotheses in our experiments on several contextually extended
environments from the benchmark library CARL [5]. Our results demonstrate the importance of
developing and applying AutoRL methods to tune existing RL methods in accordance with their task
as well as generating better insights into where and why RL agents fail.

2 Related Work

The sensitivity of RL algorithms to changes in their hyperparameters [15, 17] has been a first indicator
for the need of hyperparameter optimization. Research into which hyperparameters and algorithm
components are deciding factors for different classes of algorithms like policy gradient [10, 1] or
off-policy algorithms [26] has contributed to our fundamental understanding of RL algorithms, even
though it has not solved their instability issues.

Automatically learning or tuning RL pipelines for a given problem can instead significantly boost
performance. There is a broad span of methods, from learning RL algorithms from scratch [34, 7], to
learning algorithm components [11, 8] or tuning the agent’s hyperparameters [19, 16, 18, 12].

While prior work on hyperparameters in RL shows that RL algorithms are sensitive to hyperpa-
rameters and greatly benefit from optimized hyperparameters settings, aptitudes of hyperparameter
configurations on changing or varying training environments are underexplored. When the goal is ro-
bust RL, however, it is just as important to determine how sensitive the hyperparameter configuration
is to environment perturbations as to find a well-performing configuration.

3 Contextual Reinforcement Learning

A contextual Markov Decision Process (cMDP) [14, 25] is defined as a set of multiple MDPs
MI := {Mi}i∼I characterized by the instance i sampled from the instance set or distribution I.
The MDP is a 4-tupleMi := (S,A, Ti,Ri) consisting of a state space S , action space A, transition
function Ti and reward functionRi. The transition function Ti and reward functionRi are subject to
change across instances. With this formulation we can express slight variations in the environment,
e.g., varying lengths and masses of a pendulum, and therefore train for generalization. The objective
can vary according to the current application, e.g. maximizing the expected return across a test
instance set or for a single, hard instance.

Figure 1: In the contextual RL setting
Pendulum’s [6] physical parameters
are varied across instances while the
underlying dynamic equations stay the
same.

In order to analyze the effect of HPs in this setting we use the
CARL (Contextually Adaptive RL) benchmark library [5].
CARL extends well-known environments and makes the con-
text defining the behavior of the environment configurable
and optionally visible. The context is often based on physical
parameters like gravity or friction, see Figure 1. In our exper-
iments, we use these benchmarks to generalize over different
instances (contexts) of the same environment, drawn from
a common context distribution. The benchmark includes
environments from Open AI’s gym [6] (classic control and
box2d), Google Brax’ [13] locomotion environments as well
as Super Mario (TOAD-GAN) [3, 30] controlling level sim-
ilarity and a RNA folding environment [29].

4 Experiments

We evaluate how context and changes in environments influence the meta-problem of setting the
hyperparameters. For this purpose, we use PB2 [18] to optimize the hyperparameters of a standard
DDPG [22] algorithm on CARLPendulum and PPO [31] on CARLAcrobot and CARLLunarLan-
der [5]. For all environments we first use 8 parallel PB2 workers on one seed2 to optimize the
hyperparameters during the training with a time budget of 24 h and 150GB of memory. For DDPG,

2We note that one PB2 run with a single seed only allows us to draw preliminary conclusions from our results
and further runs are needed to verify our findings. Nevertheless, we believe that our results provide an important
first indication for potential challenges in AutoRL for cRL.
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(a) CARLPendulum (b) CARLAcrobot

Figure 2: Training performance with hidden and visible context on each hyperparameter schedule
found by PB2.The different line colors indicate schedules found by individual PB2 workers, left with
confidence intervals, right with one line for each seed.

we optimize the learning rate, discount factor and soft update τ ; for PPO the learning rate, discount
factor, entropy and value function coefficients, the maximum gradient normalization and GAE pa-
rameter. The optimization bounds of the hyperparameters can be found in Appendix A. For testing
the hyperparameter policies we use 5 new seeds. Please see the Appendix A for further details on
the hardware, software and hyperparameters. The code for these experiments along with the found
hyperparameter schedules is available at a anonymous repository during the review period and the
actual one will be public upon acceptance: https://github.com/automl-private/cRL_HPO

4.1 Tunability of Visible and Hidden Context Features

Using the setup from above we varied the gravity for CARLPendulum and the length of the first link
for CARLAcrobot. Similar trends can be observed for both environments. First of all, visible context
information in combination with hyperparameter optimization leads to better overall performance
and even learning speed. For CARLPendulum a final evaluation score of −312 was achieved for
hidden context and −262 for visible context. For CARLAcrobot the difference is more substantial:
−184.65 for hidden, −80.13 for visible context, on the best seed, resp.

Our second observation is that hyperparameter optimization on visible context information seems to
be much harder. In particular on CARLAcrobot, only some seeds of the hyperparameter schedule
evaluation are able to perform well and most of them fail. There is not only a large performance
gap between schedules, but also between different random seeds which we do not observe if we
hide the context, see lines with same colors in Figure 2b. On CARLPendulumn, there is also some
performance spread for hidden context information, but the spread is wider for visible context
information.

Last but not least, we also looked into some of the hyperparameter schedules found by PB2, see
Figure 4 in the appendix. These schedules change more for visible than for hidden context information.
This is another indication that hyperparameter optimization for cRL with visible context information
is harder, although more explicit information is provided.

4.2 A Failure Case: LunarLander

With the same experimental setup as before, we optimzed the hyperparameters on the CARLLu-
narLander environment across varying gravity settings. The results paint a different picture than
above (see Figure 3): While PB2 was able to find hyperparameter schedules resulting in a positive
performance trend for hidden contexts, it could not do so for visible contexts. In addition, although the
agent with the hidden contexts reaches higher rewards, it was still not able to solve the environment.

There are several possible reasons for these observations. We believe that the most likely ones include:
(i) The variation introduced into CARLLunarLander via the different contexts might be much larger
or much harder to learn than in CARLPendulum and CARLAcrobot. In the case of hidden context
information, the agent might not be able to sufficiently distinguish between different instances. The
sub-optimal performance even in the case of hidden context information compared to the solved

3

https://github.com/automl-private/cRL_HPO


Figure 3: Training performance with hidden and visible context on each hyperparameter schedule
found by PB2 on CARLLunarLander. The different line colors indicate schedules found by individual
PB2 workers with confidence intervals.

score of 200 is an indication for that. In the case of visible context information, the agent is able
to distinguish between the instances, but cannot properly learn to solve the environment potentially
due to catastrophic forgetting, which cannot be compensated by HPO alone. (ii) The visible context
information provides so much added information to process, that the capacity of the default policy
network might be insufficient. Therefore the agent cannot learn when the context is visible, but
improves at least to a degree when it is hidden. This would imply that neural architecture search [9]
would become much more important for RL. Some further preliminary results supporting this are
shown in Appendix C. (iii) For each instance, a different optimal hyperparameter configuration is
needed and there is no single hyperparameter configuration that performs well on all the tasks. In the
related field of algorithm configuration this is a typical observation for some tasks [35]. (iv) Because
HPO is much harder in this case (for unknown reasons), the hyperparameter optimization could not
move past a local optimum in the learning rate (see Appendix A) for the visible case, resulting in a
suboptimal hyperparameter configuration. This hypothesis would also be supported by the results on
CARLPendulum and CARLAcrobot.

At the moment, we cannot say for certain which of these reasons caused our experiments to fail or
if more factors are involved. Our findings, however, are a further indication that the cRL setting,
especially as environments grow more challenging, is harder to navigate for AutoRL methods
compared to standard RL.

5 Conclusion and Future Work

For the contextual RL setting we show that tuning hyperparameters for the RL algorithm at hand
plays a crucial role in solving the environment. Especially in the case where we provide the agent
with the context, the hyperparameter configuration can decide between success and failure. Even so,
using hyperparameter optimization in cRL is more complex than for standard RL tasks and as we
have seen, finding well-performing configurations is not a guarantee. The addition of context makes
the learning process more difficult and harder to optimize for and finding the source of failure can be
hindered by the fact that we have comparatively little knowledge about the cRL setting. Thus there is
a need for more insights into cRL in general and AutoRL for cRL in particular.

With these preliminary results we want to motivate further research both into how RL agents generalize
in the first place and how we can more easily adapt their hyperparameters to support this goal. Our
results also clearly show the importance of using existing AutoRL methods when applying RL to a
task and the potential improvements gained. Lastly, they emphasise that the methods we currently use
for RL are constrained to their problem setting by factors including their hyperparameters. If we want
to move beyond single task settings and towards general RL, we need to refine our understanding of
the interplay of RL algorithms and their hyperparameters and develop efficient AutoRL practices.
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A Hardware, Software and Hyperparameters

Hardware All experiments are executed on a slurm GPU cluster consisting of six nodes with six to
eight Nvidia RTX 2080 Ti GPUs each.

Software Our implementation uses the agents from stablebaselines3 [27].

For CARLPendulum [5] we tune the hyperparameters of the DDPG agent [22], for CARLAcrobot
and CARLLunarLander we use the PPO agent [32]. For tuning we use PB2 [18] as implemented in
the ray tune package [28].

Our experiments can be reproduced via the scripts we provide at
https://github.com/automl-private/cRL_HPO.

PB2 Usage PB2 [18] runs with 8 workers with a total timelimit of 24 h and a memory limit of
150GB. After 4096 environment steps the hyperparameter configurations are adjusted by PB2. We
start the optimization with a batch size of 128, a learning rate of 0.00003 and discount factor of 0.99
for both algorithms. All other hyperparameters start at their default values.

In both cases, the learning rate is limited to be between 0.00001 and 0.02 and the discount factor
between 0.8 and 0.999. For DDPG [22], τ can lie between 0.0 and 0.99. In PPO [32], the maximum
gradient normalization and value function coefficient are both limited to between 0.0 and 1.0, the
entropy coefficient to between 0.0 and 0.5 and the GAE parameter is between 0.8 and 0.999.

The schedules found by PB2 [18] are visualised in Figure 4. Please note that not all workers finished
the desired number of timesteps due to the memory and time limits.

(a) CARLPendulum (b) CARLAcrobot (c) CARLLunarLander

Figure 4: Hyperparameter schedules found by PB2 [18] for hidden and visible context. The different
linecolors indicate schedules found by individual PB2 workers (8 in total).

B Context Training Distribution

During training only one context feature is varied in each environment. For training we use a set of
100 contexts. We sample the context feature from a Gaussian distribution, see Table 1 for details. The
default value of the context feature is used as the mean µ.
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Table 1: Sampling context features from a Gaussian distribution N (µ, σ).
Environment Context Feature µ σ

CARLPendulum gravity (g) 10 0.1 · 10
CARLAcrobot link_length_1 1 0.1 · 1
CARLLunarLander gravity (GRAVITY_Y) −10 0.1 · 10

C Policy Sizes on CARLLunarLander

We identify the policy size as a possible cause for the poor results on CARLLunarLander. As PB2
cannot currently optimize discrete hyperparameters, we were not able to tune it in addition to our other
hyperparameters. The default policy network has two hidden layers with 64 units each. Rerunning
the found hyperparameter policies with a greater amount of units (see Figure 5) shows a slightly more
positive trend than the experiment in the main paper does. This suggests that the architecture should
be adapted in CARLLunarLander, even with only smaller variations in the gravity as used here. It is
unclear, however, if this would solve the problem entirely, as overall performance is only increased by
a small margin. A reason might be that the network size is correlated to the other hyperparameters.

Figure 5: CARLLunarLander with increased number of policy units.
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