
clasp, claspfolio, aspeed: Three Solvers from the
Answer Set Solving Collection Potassco
Benjamin Kaufmann
University of Potsdam,

kaufmann@cs.uni-potsdam.de

Torsten Schaub
University of Potsdam,

torsten@cs.uni-potsdam.de

Marius Schneider
University of Potsdam,

manju@cs.uni-potsdam.de

I. clasp (2.0.6)

Authors:
M. Gebser (University of Potsdam),
B. Kaufmann, and T. Schaub

clasp1 combines the high-level modeling capacities of An-
swer Set Programming (ASP; [1]) with state-of-the-art tech-
niques from the area of Boolean constraint solving. It is
originally designed and optimized for conflict-driven ASP
solving [2], [3], [4]. Most of its innovative algorithms and data
structures, like e.g. ASP-oriented pre-processing [5] or native
support of aggregates [6], are thus outside the scope of SAT
solving. However, given the proximity of ASP to SAT, clasp
can also deal with formulas in CNF via an additional DIMACS
frontend. As such, it can be viewed as a chaff-type Boolean
constraint solver [7] featuring a number of techniques found
in SAT solvers based on Conflict-Driven Clause Learning.
For example, clasp supports pre-processing [8], [9], phase
caching [10], on-the-fly subsumption [11], and aggressive
deletion [12].

Starting with version 2.0, clasp also supports parallel (multi-
threaded) solving either by search space splitting and/or com-
peting strategies. While the former involves dynamic load
balancing in view of highly irregular search spaces, both
modes aim at running searches as independently as possible
in order to take advantage of enhanced sequential algorithms.
Furthermore, clasp supports the exchange and physical sharing
of (recorded) nogoods. While unary, binary, and ternary no-
goods are always shared among all threads, sharing of longer
ones is mainly controlled by their respective number of distinct
decision levels associated with the contained literals, called the
Literal Block Distance [12].

clasp is implemented in C++ using Intel’s Threading Build-
ing Blocks library for platform-independent threads, atomics,
and concurrent containers. All major routines of clasp are
lock-free and optimized representations of constraints based
on a clear distinction between read-only, shared, and thread-
local data further promote the scalability of parallel search.
clasp currently supports up to 64 freely configurable (non-
hierarchic) threads.

The following configurations of clasp participated in the
respective tracks of SAT Challenge 2012:

1http://potassco.sourceforge.net/#clasp

• Application:
--sat-p=20,25,240,-1,1
--heuristic=Vsids
--dynamic-restarts=100,0.7
--dfrac=0.5 --del=3.0,1.1,20.0
--dgrowS=100,1.5 --dinit=500,20000
--dsched=+,10000,2000 --dglue=2
--update-lbd --save-p=75
--recursive-str --otfs=2
--reverse-arcs=2 --cir=3
--cir-bump=1023

• Combinatorial:
--sat-p=10,25,240,-1,1
--heuristic=Vsids --restarts=128,1.5
--del=10.0,1.1,20.0 --dinit=1000,10000
--dsched=+,10000,1000 --dglue=2
--otfs=2 --reverse-arcs=1 --cir=3

• Parallel:
--sat-p=20,25,240,-1,1
--threads=8 --port=sat12-port.txt
--distribute=all,4 --integrate=gp,512

The main difference between the application and the combina-
torial configuration lies in the selected restart strategy. While
the application configuration uses an aggressive dynamic strat-
egy, the combinatorial uses a geometric policy restarting every
128×1.5i conflicts. The meaning of the individual parameters
is as follows:

• sat-p: Enables SatELite-like preprocessing with (op-
tional) blocked clause elimination. The first three param-
eters control number of iterations, maximal occurrence
cost, timeout in seconds, respectively. The last parameter
controls blocked clause elimination.

• heuristic: Both configurations use a MiniSAT-like
version of the VSIDS heuristic.

• dynamic-restarts: Enables a dynamic restart strat-
egy similar to the one of glucose [13]. It maintains the
running average of LBDs R over the last x conflicts and
restarts if R > y× global average. In contrast to other
strategies, our version does not use a fixed threshold.
Instead, it monitors the current restart-frequency and
adapts the threshold dynamically in order to avoid either
very slow or overly aggressive restarts.

• dfrac: Sets the fraction of clauses removed on clause



deletion. The default is 0.75.
• del=F,G,Z, dinit, dgrowS: Configure the pri-

mary deletion schedule based on number of lerant
clauses. Given P , the number of problem clauses, the
initial limit X is set to 1

F × P clamped to the interval
given by dinit. Whenever the grow schedule fires, X is
multiplied by G but growth stops once X exceeds Z×P .
If dgrowS is not given, the selected restart strategy is
used.

• dsched: Configures the secondary deletion schedule
based on number of conflicts. The current threshold of
this schedule is reset, whenever the primary schedule
fires. Both configurations use an arithmetic policy firing
every X + Y × i conflicts.

• dglue: Enables glucose-like glue clauses. Clauses with
an lbd ≤ X are not deleted.

• update-lbd: Enables updates of LBD values of learnt
clauses. In contrast to other solvers, clasp updates LBD
values only for clauses participating in the resolution of
new conflict clauses.

• save-p=X: Enables Rsat-like phase caching on back-
jumps of length ≥ X . By default, phase caching is
disabled.

• recursive-str: Enables MiniSAT-like expensive
conflict clause minimization.

• otfs: Enables on-the-fly subsumption.
• reverse-arcs: Enables ManySAT-like inverse-arc

learning [14].
• cir=X, cir-bump=Y: Enables counter implication

restarts (see Pragmatics of SAT 2011) every Xth restart.
The heuristic value Y is used to compute the amount
added to the activity of variables.

Finally, the parallel configuration uses a portfolio of eight
threads including the aforementioned application configura-
tion. Individual threads distribute learnt conflict clauses with
an lbd ≤ 4. Furthermore, the 512 most recently received
clauses are excluded from clause deletion.

II. claspfolio (1.1.0)

Authors:
C. Schulz-Hanke (University of Potsdam),
T. Schaub, and M. Schneider

Inspired by satzilla [15], we address the high sensitivity of
ASP and SAT solving to search configuration by exploring
a portfolio-based approach, named claspfolio2 [16]. To this
end, we concentrate on the solver clasp and map a collection
of numeric instance features onto an element of a portfolio
of distinct clasp configurations (based on a Support Vector
Regression [17]), in contrast to satzilla, which maps to a
portfolio of different solvers.

In detail, claspfolio is based on 60 static and 28 dynamic
features for SAT problems. The features are mainly inspired
by satzilla [15] which are based on the results of Nudelman
et al. [18]. The static features include the number of variables,

2http://potassco.sourceforge.net/#claspfolio

number of clauses, the variable per clause ratio, balance
between positive and negative occurrences of variables, the
fraction of horn clauses and statistics about a random sampled
part of the variable graph, clause graph and variable-clause
graph. The dynamic features are recorded after each restart of a
pre-solving phase with at most three restarts. After each restart,
these dynamic features include the number of deleted clauses,
free variables, choices, conflicts, restarts and backjumps are
recorded. The features will be normalized with a z-score and
used to evaluate the Support Vector Regression models of each
configuration in the portfolio. Hence, claspfolio selects the
configuration with the best predicted performance to solve the
given instance.

The portfolio of claspfolio consists of complementary clasp
configurations which have been found by manual tuning and
using the automatic algorithm configuration tool paramils [19].
paramils tuned clasp on instances of the 2008 SAT Race,
2010 SAT Race and 2011 SAT Competition; both on the entire
instance set and on individual subclasses. In the end, claspfolio
used 30 configurations of clasp (2.0.6).

claspfolio is a branch of clasp and therefore, the algorithm
selection is directly integrated in clasp. Hence, claspfolio is
also implemented in C++.

III. aspeed (1.0.0)

Authors:
R. Kaminski (University of Potsdam),
H. Hoos (University of British Columbia),
T. Schaub, and M. Schneider

Inspired by the simple, yet successful portfolio-based SAT-
solver ppfolio [20] (in the 2011 SAT Competition), our ap-
proach, dubbed aspeed3 [21], computes timeout-minimal time
slices for a portfolio of solvers or solver configurations and
sequences these to minimize average runtime. aspeed performs
these calculations by means of a declarative specification in
ASP; its execution relies on ASP tools from the Potassco col-
lection [22], allowing for a flexible and compact encoding of
the problem constraints. In addition, aspeed is able to compute
parallel schedules for execution on multi-core architectures.
In contrast to powerful portfolio-based approaches, such as
satzilla [15] and 3S [23], aspeed does not rely on instance
features and is therefore more easily applicable to problems
for which features are not (yet) available.

In the 2012 SAT Challenge, aspeed uses a portfolio of clasp
configurations (2.0.6). The portfolio and the corresponding
runtime data are the same as used for training claspfolio (see
above). Since the portfolio consists of clasp configurations and
clasp is used to compute the schedules, aspeed can be seen
as a self-optimizing solver.

aspeedc uses the same portfolio as claspfolio. Further-
more, aspeedm includes the medal-winning solvers of the
2011 SAT Competition, i.e. glueminisat [24], lingeling [25],
march rw [26], qutersat [27], sattime and sparrow [28], in
addition to the claspfolio portfolio.

3http://potassco.sourceforge.net/labs.html#aspeed



The aspeed framework is implemented in Python-2.7 and
uses the ASP Potassco collection to compute the optimal
schedules.

ACKNOWLEDGMENTS

This work was funded by the German Science Foundation
(DFG) under granta SCHA 550/8-1/2.

REFERENCES

[1] C. Baral, Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[2] M. Gebser, B. Kaufmann, A. Neumann, and T. Schaub, “Conflict-driven
answer set solving,” in Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence (IJCAI’07), M. Veloso, Ed. AAAI
Press/The MIT Press, 2007, pp. 386–392.

[3] ——, “clasp: A conflict-driven answer set solver,” in Proceedings
of the Ninth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’07), ser. Lecture Notes in Artificial
Intelligence, C. Baral, G. Brewka, and J. Schlipf, Eds., vol. 4483.
Springer-Verlag, 2007, pp. 260–265.

[4] ——, “Conflict-driven answer set enumeration,” in Proceedings of the
Ninth International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’07), ser. Lecture Notes in Artificial Intelli-
gence, C. Baral, G. Brewka, and J. Schlipf, Eds., vol. 4483. Springer-
Verlag, 2007, pp. 136–148.

[5] ——, “Advanced preprocessing for answer set solving,” in Proceed-
ings of the Eighteenth European Conference on Artificial Intelligence
(ECAI’08), M. Ghallab, C. Spyropoulos, N. Fakotakis, and N. Avouris,
Eds. IOS Press, 2008, pp. 15–19.

[6] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub, “On the im-
plementation of weight constraint rules in conflict-driven ASP solvers,”
in Proceedings of the Twenty-fifth International Conference on Logic
Programming (ICLP’09), ser. Lecture Notes in Computer Science, P. Hill
and D. Warren, Eds., vol. 5649. Springer-Verlag, 2009, pp. 250–264.

[7] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff:
Engineering an efficient SAT solver,” in Proceedings of the Thirty-eighth
Conference on Design Automation (DAC’01). ACM Press, 2001, pp.
530–535.

[8] N. Eén and A. Biere, “Effective preprocessing in SAT through variable
and clause elimination,” in Proceedings of the Eighth International Con-
ference on Theory and Applications of Satisfiability Testing (SAT’05),
ser. Lecture Notes in Computer Science, F. Bacchus and T. Walsh, Eds.,
vol. 3569. Springer-Verlag, 2005, pp. 61–75.

[9] M. Järvisalo, A. Biere, and M. Heule, “Blocked clause elimination,”
in Proceedings of the Sixteenth International Conference on Tools and
Algorithms for the Construction and Analysis of Systems (TACAS’10),
ser. Lecture Notes in Computer Science, J. Esparza and R. Majumdar,
Eds., vol. 6015. Springer-Verlag, 2010, pp. 129–144.

[10] K. Pipatsrisawat and A. Darwiche, “A lightweight component caching
scheme for satisfiability solvers,” in Proceedings of the Tenth Interna-
tional Conference on Theory and Applications of Satisfiability Testing
(SAT’07), ser. Lecture Notes in Computer Science, J. Marques-Silva and
K. Sakallah, Eds., vol. 4501. Springer-Verlag, 2007, pp. 294–299.

[11] H. Han and F. Somenzi, “On-the-fly clause improvement,” in Proceed-
ings of the Twelfth International Conference on Theory and Applications
of Satisfiability Testing (SAT’09), ser. Lecture Notes in Computer Sci-
ence, O. Kullmann, Ed., vol. 5584. Springer-Verlag, 2009, pp. 209–222.

[12] G. Audemard and L. Simon, “Predicting learnt clauses quality in
modern SAT solvers,” in Proceedings of the Twenty-first International
Joint Conference on Artificial Intelligence (IJCAI’09), C. Boutilier, Ed.
AAAI Press/The MIT Press, 2009, pp. 399–404.

[13] ——, “GLUCOSE: A solver that predicts learnt clauses quality,” in
SAT 2009 competitive events booklet: preliminary version, D. Le Berre,
O. Roussel, L. Simon, V. Manquinho, J. Argelich, C. Li, F. Manyà, and
J. Planes, Eds., 2009, pp. 7–8, available at http://www.cril.univ-artois.
fr/SAT09/solvers/booklet.pdf.

[14] G. Audemard, L. Bordeaux, Y. Hamadi, S. Jabbour, and L. Sais,
“A generalized framework for conflict analysis,” in Proceedings of
the Eleventh International Conference on Theory and Applications of
Satisfiability Testing (SAT’08), ser. Lecture Notes in Computer Science,
H. Kleine Büning and X. Zhao, Eds., vol. 4996. Springer-Verlag, 2008,
pp. 21–27.

[15] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, “SATzilla: Portfolio-
based algorithm selection for SAT,” Journal of Artificial Intelligence
Research, vol. 32, pp. 565–606, 2008.

[16] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. Schneider, and
S. Ziller, “A portfolio solver for answer set programming: Preliminary
report,” in Proceedings of the Eleventh International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR’11), ser.
Lecture Notes in Artificial Intelligence, J. Delgrande and W. Faber, Eds.,
vol. 6645. Springer-Verlag, 2011, pp. 352–357.

[17] C. Chang and C. Lin, “LIBSVM: A library for support vector machines,”
ACM Transactions on Intelligent Systems and Technology, vol. 2, pp.
27:1–27:27, 2011.

[18] E. Nudelman, K. Leyton-Brown, H. Hoos, A. Devkar, and Y. Shoham,
“Understanding random SAT: Beyond the clauses-to-variables ratio,” in
Proceedings of the Tenth International Conference on Principles and
Practice of Constraint Programming (CP’04), ser. Lecture Notes in
Computer Science, M. Wallace, Ed., vol. 3258. Springer-Verlag, 2004,
pp. 438–452.

[19] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stutzle, “ParamILS: An
Automatic Algorithm Configuration Framework,” Journal of Artificial
Intelligence Research, vol. 36, pp. 267–306, 2009.

[20] O. Roussel, “Description of ppfolio,” Centre de Recherche en Informa-
tique de Lens, Tech. Rep., 2011.

[21] H.Hoos, R. Kaminski, T. Schaub, and M. Schneider, “aspeed: ASP-based
solver scheduling,” 2012, under review.

[22] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and
M. Schneider, “Potassco: The Potsdam answer set solving collection,”
AI Communications, vol. 24, no. 2, pp. 105–124, 2011.

[23] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sell-
mann, “Algorithm Selection and Scheduling,” in Proceedings of the
Seventeenth International Conference on Principles and Practice of
Constraint Programming (CP’10), ser. Lecture Notes in Computer
Science, J. Lee, Ed., vol. 6876. Springer-Verlag, 2011, pp. 454–469.

[24] H. Nabeshima, K. Iwanuma, and K. Inoue, “Glueminisat2.2.5,” Univer-
sity of Yamashima and National Institute of Informatics, Japan, Tech.
Rep., 2011.

[25] A. Biere, “Lingeling and friends at the SAT competition 2011,” Insti-
tute for Formal Models and Verification, Johannes Kepler University,
Technical Report FMV 11/1, 2011.

[26] M. Heule and H. van Maaren, “March dl: Adding adaptive heuristics and
a new branching strategy,” Journal on Satisfiability, Boolean Modeling
and Computation, vol. 2, pp. 47–59, 2006.

[27] C. Wu, T. Lin, C. Lee, and C. Huang, “Qutesat: a robust circuit-based
sat solver for complex circuit structure,” in Proceedings of the Design,
Automation and Test in Europe Conference and Exposition (DATE’07),
R. Lauwereins and J. Madsen, Eds. ACM, 2007, pp. 1313–1318.

[28] D. Tompkins, A. Balint, and H. Hoos, “Captain Jack – New Variable
Selection Heuristics in Local Search for SAT,” in Proceedings of the
Fourteenth International Conference on Theory and Applications of
Satisfiability Testing (SAT’11), ser. Lecture Notes in Computer Science,
K. Sakallah and L. Simon, Eds., vol. 6695. Springer-Verlag, 2011, pp.
302–316.

[29] C. Baral, G. Brewka, and J. Schlipf, Eds., Proceedings of the Ninth
International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’07), ser. Lecture Notes in Artificial Intelligence,
vol. 4483. Springer-Verlag, 2007.


