Introduction to Natural Language Processing

Part V: Basics of Empirical Methods

Henning Wachsmuth

https://ai.uni-hannover.de

Introduction to NLP V Empirical Methods

© Wachsmuth 2023 1

Learning Objectives

Concepts

- · The notion of empirical methods
- Standard evaluation measures in NLP
- The need for annotated text corpora
- The most relevant basics from statistics

Methods

- Selection of the right evaluation measure for a task
- Measuring of effectiveness in NLP
- Development and evaluation of approaches on text corpora
- The study of hypotheses with significance tests

Outline of the Course

- I. Overview
- II. Basics of Linguistics
- III. NLP using Rules
- IV. NLP using Lexicons
- V. Basics of Empirical Methods
 - Introduction
 - Evaluation Measures
 - Empirical Experiments
 - Hypothesis Testing
- VI. NLP using Regular Expressions
- VII. NLP using Context-Free Grammars
- VIII. NLP using Language Models
- IX. Practical Issues

Introduction

Empirical Methods

Empirical method

- A quantitative method that analyzes numbers and/or statistics to study a *research question* on behaviors or phenomena
- Derives knowledge from experience (rather than from theory or belief)

Quantitative vs. qualitative methods

- Quantitative. Characterized by objective measurements
- Qualitative. Emphasizes the understanding of human experience

Descriptive and inferential statistics

• Descriptive. Methods for summarizing a sample or a distribution of values; used to *describe phenomena*

4.5, 5, 6, 6.5, 6.5, 7, 7, 7, 7, 5, 8 \rightarrow mean M = 6.5

• Inferential. Methods for drawing conclusions based on values; used to *generalize inferences* beyond a given sample

The average number is significantly higher than 5.

Empirical Methods

NLP and Empirical Methods

NLP (recap)

- Understanding and generating human-readable text (or speech) using computational methods
- Use of rule-based or statistical approaches for this purpose
- The output information produced is not always correct.

Elements of empirical methods in NLP

- Evaluation measures. Quantification of the quality of a method, especially its *effectiveness*
- Empirical experiments. Evaluation of the quality on *text corpora* and comparison to alternative methods
- Hypothesis testing. Use of statistical methods to "proof" the quality of a method in comparison to others

Evaluation Measures

Evaluation Measures

Evaluation measures in NLP

- In NLP, an evaluation measure quantifies the quality of a method on some task and data.
- Methods can be ranked with respect to an evaluation measure.
- Quality is assessed in terms of *effectiveness* or *efficiency*.

Effectiveness

- The extent to which the output information of an approach is correct
- High effectiveness is the primary goal of any NLP method.
- Classification measures. Accuracy, precision, recall, F₁-score, ...
- Regression measures. Mean absolute/squared error, ...

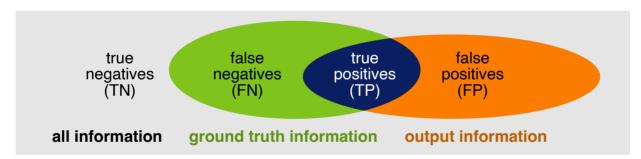
Efficiency

- The costs of a method in terms of the consumption of time or space
- Measures. Run-time (per unit), training time, memory consumption, ... Efficiency will be discussed at the end of this course.

Introduction to NLP V Empirical Methods

Classification tasks

- The instances of each class can be evaluated in a binary manner.
- For each instance, check whether its class matches the ground truth.
- · Positives. The class instances a given approach has inferred
- Negatives. All other possible instances



Instance types in the evaluation

- True positive (TP). A positive that belongs to the ground truth
- False positive (FP). A positive that does not belong to the ground truth
- False negative (FN). A negative that belongs to the ground truth
- True negative (TN). A negative that does not belong to the ground truth

Accuracy

Accuracy

- The accuracy *A* is a measure of the correctness of an approach.
- A answers: How many classification decisions are correct?
- For k = 2 classes, accuracy is the ratio of true under all instances.

$$A_{binary} = \frac{|TP| + |TN|}{|TP| + |TN| + |FP| + |FN|}$$

• For k > 2 classes, accuracy is simply the ratio of true positives.

$$A_{multi} = \frac{|TP_1| + \ldots + |TP_k|}{|TP_1| + |FP_1| + \ldots + |TP_k| + |FP_k|}$$

When to use accuracy?

- Accuracy is adequate when all classes are of similar importance.
- Examples: Sentiment analysis, part-of-speech tagging, ...

"The"/DT "man"/NN "sighed"/VBD "."/. "It"/PRP "s"/VBZ "raining"/VBG ...

Limitations of Accuracy

Example: Spam detection

- Assume 4% of the mails that your mail server lets through are spam.
- What is the accuracy of a spam detector that always predicts "no spam" for mails?

11

When not to use accuracy?

• In tasks where one class is rare, high accuracy can be achieved by never predicting the class.

4% spam \rightarrow 96% accuracy by always predicting "no spam"

• This includes tasks where the correct output information covers only portions of text, such as in entity recognition.

"Apple rocks." \rightarrow Negatives: "A", "Ap", "App", "Appl", "Apple ", "Apple r", ...

Accuracy is inadequate when true negatives are of low importance.
Introduction to NLP V Empirical Methods
 Wachsmuth 2023

Precision and Recall

Precision

- The precision *P* is a measure of the exactness of an approach.
- P answers: How many of the found instances are correct?

$$P = \frac{|TP|}{|TP| + |FP|}$$
 true false positives (FP) for the second sec

Recall

- The recall R is a measure of the completeness of an approach.
- *R* answers: How many of the correct instances have been found?

$$R = \frac{|TP|}{|TP| + |FN|}$$

Observation

• True negatives not included in formulas

Introduction to NLP V Empirical Methods

Idea of Precision and Recall

Example: Spam detection (revisited)

- Assume 4% of the mails that your mail server lets through are spam.
- What precision and recall does the "always no spam" detector have for detecting spam?

Idea of precision and recall

- Put the focus on a specific class (here: "spam").
- The typical case is that the true negatives are irrelevant.
- If multiple classes are important, precision and recall can be computed for each class (see below).

Example: Spam detection (a last time)

• What precision and recall does an "always spam" detector have?

P = 0.04 *R* = 1.0

 F_1 -Score

What is better?

- A precision of 0.52 and a recall of 0.52 (option a).
- A precision of 0.04 and a recall of 1.00 (option b).
- Often, a single effectiveness value is desired.

Problem with the mean

- In the above example, the mean would be the same for both options.
- But 96% of the found instances are wrong for option b.

F_1 -score (aka F_1 -measure)

- The F_1 -score is the harmonic mean of precision and recall.
- F_1 favors balanced over imbalanced precision and recall values.

$$F_1 = \frac{2 \cdot P \cdot R}{P + R}$$

Option a:
$$F_1 = 0.52$$
, option b: $F_1 = 0.08$

Introduction to NLP V Empirical Methods

© Wachsmuth 2023 14

F₁-Score in Boundary Detection Tasks

Boundary errors

• A common error in tasks where text spans need to be annotated is to choose a (slightly) wrong boundary of the span.

Entities: "First Bank of Chicago stated..." vs. "First Bank of Chicago stated..." Sentences: "Max asked: 'What's up?'" vs. "Max asked: 'What's up?'"

Issue with boundary errors

- Boundary errors leads to both an FP and an FN.
- Identifying nothing as a positive would increase the F₁-score.

How to deal with boundary errors?

- Different accounts for the issue have been proposed, but the standard *F*₁ is still used in most evaluations.
- A relaxed evaluation is to consider some character overlap (e.g., >50%) instead of exact boundaries.

Micro-Averaging and Macro-Averaging

Evaluation of multi-class tasks

- In general, each class in a multi-class task can be evaluated binarily.
- Accuracy can be computed for any number k of classes (as seen).
- The other measures must be combined with micro- or macro-averaging.

Micro-averaged precision (recall and F₁-score analog)

• Micro-averaging takes into account the number of instances per class, so larger classes get more importance.

$$Micro - P = \frac{|TP_1| + \ldots + |TP_k|}{|TP_1| + \ldots + |TP_k|} + |FP_1| + \ldots + |FP_k|$$

Macro-averaged precision (recall and F₁-score analog)

• Macro-averaging computes the mean result over all classes, so each class gets the same importance.

$$Macro - P = \frac{P_1 + \ldots + P_k}{k}$$

Introduction to NLP V Empirical Methods

© Wachsmuth 2023 16

Confusion Matrix

Confusion matrix

- Each row refers to the ground-truth instances of one of k classes.
- Each column refers to the classified instances of one class.
- The cells contain the numbers of correct and incorrect classifications of a given approach.

Ground truth	Classified as									
	Class a	Class b		Class k						
Class a	$ TP_a $	$ FP_b \cap FN_a $		$ FP_k \cap FN_a $						
Class b	$ FP_a \cap FN_b $	$ TP_b $		$ FP_k \cap FN_b $						
Class k	$ FP_a \cap FN_k $	$ FP_b \cap FN_k $		$ TP_k $						

Why confusion matrices?

- Used to analyze errors, to see which classes are confused
- Contains all values for computing micro- and macro-averaged results

Computation of Micro- and Macro-Averaged Values

Example: Evidence classification

 Assume an approach that classifies candidate evidence statements as being an "anecdote", "statistics", "testimony", or "none" is given.

Confusion matrix of the results

Ground-truth		Classif	Tot	Precision			
	Anecdote	Statistics	Testimony	None	TP	FP	per class
Anecdote	199	5	35	183	199	165	0.55
Statistics	17	29	0	27	29	13	0.69
Testimony	30	1	123	71	123	71	0.63
None	118	7	36	1455	1455	281	0.84

Micro- vs. macro-averaged precision (recall and F₁-score analog)

Micro-P	=	$\frac{199+29+123+1455}{199+29+123+1455+165+13+71+281}$	=	0.77
Macro-P	=	$\frac{0.55 + 0.69 + 0.63 + 0.84}{4}$	=	0.68

© Wachsmuth 2023 18

Regression Effectiveness

Regression task

- In a regression task, numeric values are predicted for instances from a continuous scale.
- The scale is usually, but not necessarily, predefined.

Example: Automatic essay grading

Given a set of *n* student essays, automatically assign each essay *i* a score 1 ≤ y_i ≤ 4.
 The 4-point scale is the default in today's grading systems.

Prediction errors

- In many regression tasks, it is unlikely to predict the exact values of instances. Therefore, accuracy is not the primary measure.
- Instead, the *error* of the predicted values $Y = (y_1, \ldots, y_n)$ compared to the ground-truth values $\hat{Y} = (\hat{y_1}, \ldots, \hat{y_n})$ is in the focus.

Regression Effectiveness

Types of Prediction Errors

Mean absolute error (MAE)

- The mean difference of predicted to ground-truth values
- The MAE is robust to outliers, i.e., it does not treat them specially.

$$MAE = \frac{1}{n} \cdot \sum_{i=1}^{n} |y_i - \hat{y}_i|$$

Mean squared error (MSE)

- The mean squared difference of predicted to ground-truth values
- The MSE is specifically sensitive to outliers.

$$MSE = \frac{1}{n} \cdot \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

• Sometimes, also the root mean squared error (RMSE) is computed, defined as $RMSE = \sqrt{MSE}$.

Regression Effectiveness

Computation

Example: Automatic essay grading (revisited)

 Assume we have three automatic essay grading approaches applied to 10 essays resulting in the following scores:

	Essay									Pred	Prediction error		
Approach	1	2	3	4	5	6	7	8	9	10	MAE	N	ISE
Approach 1	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	2.6	0.88	1	.04
Approach 2	1.0	3.2	2.0	2.1	3.0	3.1	2.8	3.1	1.2	4.0	0.55	1	.28
Approach 3	1.5	2.0	1.5	2.5	2.0	2.7	3.3	3.5	3.2	3.6	0.58	C).40
Ground truth	1.0	1.0	2.0	2.0	3.0	3.0	3.0	3.0	4.0	4.0	0.00	C	0.00

Which approach is best?

- Approach 1 trivially always predicts the mean \rightarrow useless in practice.
- Approach 2 has a better MAE than Approach 3, but fails with its MSE.
- Whether MAE or MSE is more important, depends on the application. In essay grading, outliers are particularly problematic.

Introduction to NLP V Empirical Methods

Empirical Experiments

Empirical Experiments

Empirical experiments in NLP

- An empirical experiment tests a hypothesis based on observations.
- The focus is here on effectiveness evaluation in NLP.

Intrinsic vs. extrinsic effectiveness evaluation

• Intrinsic. The effectiveness of an approach is directly evaluated on the task it is made for.

"What accuracy does a part-speech tagger XY have on the dataset D?"

• Extrinsic. The effectiveness of an approach is evaluated by measuring how effective its output is in a downstream task.

"Does the ouput of XY improve sentiment analysis on D?"

Corpus-based experiments vs. user studies

- We consider the empirical evaluation of approaches on *corpora* here.
- A whole different branch of experiments is related to user studies.

Not covered in this course Introduction to NLP V Empirical Methods

Text Corpora

Text corpus (plural: corpora)

• A principled collection of (mostly real-world) natural language texts with known properties, compiled to study a language problem

Examples: 200,000 product reviews for sentiment analysis, 1000 news articles for part-of-speech tagging, ...

• The texts in a corpus are often annotated, at least for the problem to be studied.

Examples: Sentiment polarity of a full text, part-of-speech tags of each token, ...

Need for text corpora

- NLP approaches are developed and evaluated on text corpora.
- Without a corpus, it's hard to develop a strong approach and impossible to reliably evaluate it.

"It's not the one who has the best algorithm that wins. It's who has the most data."

Introduction to NLP V Empirical Methods

Text Corpora

Annotations

Annotation

- An annotation marks a text or a span of text as representing meta-information of a specific type.
- It may also be used to specify relations between other annotations.
- The types are specified by an annotation scheme.

Topic: "Google revenues" Genre: "News article"

Annotated corpora in NLP

• Usually, a corpus contains annotations of information types of interest in a task or domain.

Text Corpora

Ground Truth vs. Automatic Annotation

Manual annotations

- The annotations of a text corpus are usually created manually.
- To assess the quality of manual annotations, inter-annotator agreement is computed based on texts annotated multiple times.

Standard chance-corrected measures: Cohen's κ , Fleiss' κ , Krippendorff's α , ...

Ground-truth annotations

- Manual annotations assumed to be correct are called the *ground truth*.
- NLP usually learns from ground-truth annotations.

Automatic annotation

- Technically, NLP algorithms can be seen as just adding annotations of certain types to a processed text.
- The automatic process usually aims to mimic the manual process.

Dataset

 A sub-corpus of a corpus that is compiled and used for developing and/or evaluating approaches to specific tasks

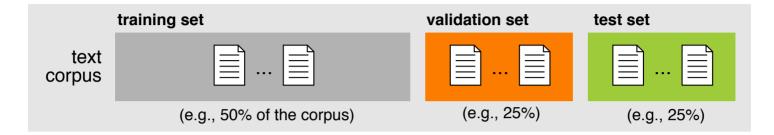
Development and evaluation based on datasets

- 1. An approach is developed based on a set of training instances.
- 2. The approach is applied to a set of test instances.
- 3. The output of the approach is compared to the ground truth of the test instances using evaluation measures.
- 4. Steps 1–3 may be iteratively repeated to improve the approach.

Corpus splitting

- The split of a corpus into datasets should represent the task well. Out of scope here. Example: No overlap of instances from one text in different sets.
- The way a corpus is split implies how to evaluate.
- Main evaluation types. Training, validation, and test vs. cross-validation

Training, Validation, and Test



Training set

- Known instances used to develop or statistically learn an approach
- The training set may be analyzed manually and automatically.

Validation set (aka development set)

- Unknown test instances used to iteratively evaluate an approach
- The approach is optimized on (and adapts to) the validation set.

Test set (aka held-out set)

- Unknown test instances used for the final evaluation of an approach
- The test set represents unseen data.

Cross-Validation

(Stratified) n-fold cross-validation

- A corpus is split into *n* dataset folds of equal size, usually *n* = 10. Stratification: The target variable distribution is kept stable across folds.
- n runs. The evaluation results are averaged over n runs.
- *i*-th run. The *i*-th fold is used for evaluation (validation). All other folds are used for development (training).

Pros and cons of cross-validation

- Often preferred when data is small, as more data is given for training
- Cross-validation avoids potential bias in a corpus split.
- Random splitting often makes the task easier, due to corpus bias.

Variations

Repeated cross-validation

- Often, cross-validation is repeated multiple times with different folds.
- This way, coincidental effects of random splitting are accounted for.

Leave-one-out validation

- Cross-validation where n equals the number of instances
- This way, any potential bias in the splitting is avoided.
- But even more data is given for training, which makes a task easier.

Cross-validation + test set

- When doing cross-validation, a held-out test set is still important.
- Otherwise, repeated development will overfit to the splitting.

Example: Evidence classification (revisited)

 Assume an evidence classification approach obtains an accuracy of 60% on a given test set, how good is this?

Selected factors that influence effectiveness

- · The number of classes and their distribution in the training set
- The class distribution in the test set
- The heterogeneity of the test set
- The similarity between training, validation, and test set
- The representativeness of the test set
- The complexity of the task

Observation

- Some factors can be controlled or quantified, but not all.
- To assess the quality of an approach, we need *comparison*.

Upper Bounds and Lower Bounds

Why comparing?

- A new approach is seen as useful if it is better than other approaches, usually measured in terms of effectiveness.
- Approaches may be compared to a *gold standard* and to *baselines*.

Gold standard (upper bound)

- The gold standard represents the best possible result on a given task.
- For many tasks, the effectiveness that humans achieve is seen as best.
- If not available, the gold standard is often equated with the ground truth in a corpus. This means: perfect effectiveness.

Baseline (lower bound)

- A baseline is an alternative approach that has been proposed before or that can easily be realized.
- A new approach should be better than all baselines.

Types of Baselines

Trivial baselines

- Methods that can easily be derived from a given task or dataset
- Used to evaluate whether a new approach achieves anything

Standard baselines

- Methods that are often used for related tasks
- Used to evaluate how hard a task is

Sub-approaches

- Sub-approaches of a new approach
- Used to analyze the impact of the different parts of an approach

State of the art

- The best published methods for the addressed task (if available)
- Used to verify whether a new approach is best

Exemplary Baselines

Example: Evidence classification (revisited)

 Assume an evidence classification approach obtains an accuracy of 60% on a given test set, how good is this?

Exemplary data distribution (AI Khatib et al., 2016)

- Four classes. "anecdote", "statistics", "testimony", "none" (majority)
- Test distribution. 18% 3% 10% 69% ٠

Potential baselines

- Trivial. Random guessing achieves an (expected) accuracy of 25%.
- Trivial. Always predicting the majority achieves 69%. ٠
- Standard. Using the distribution of word {1, 2, 3}-grams achieves 76%. ٠
- State of the art. The best published value is 78%. (AI Khatib et al., 2017)

© Wachsmuth 2023 35

Comparison

Implications

When does comparison work?

- Variations of a task may affect its complexity.
- The same task may have different complexity on different datasets.
- Only in *exactly* the same experiment setting, two approaches can be compared reasonably.

Example: Evidence classification (a last time)

- Assume evidence classification approach A obtains an accuracy of 79%, and approach B 78% in exactly the same setting.
- Is A better than B?

How to know that some effectiveness is better?

- Effectiveness differences may be coincidence.
- The significance of differences can be "proven" statistically.

Hypothesis Testing

Statistics

Variable

- An entity that can take on different quantitative or qualitative values A variable thereby represents a distribution of values.
- Independent. A variable *X* that is expected to affect another variable
- Dependent. A variable *Y* that is expected to be affected by others Other types not in the focus here: Confounders, mediators, moderators, ...

Possible causes $X_1, \ldots, X_k \rightarrow \mathsf{Effect} Y$

Scales of variables

- Nominal. Values that represent discrete, separate categories
- Ordinal. Values that can be ranked by what is better
- Interval. Values whose distance can be measured
- Ratio. Interval values that have a "true zero"

A true zero indicates the absence of what is represented by a variable.

Interval vs. ratio scale test

• Only for ratios, it is right to say that a value is twice as high as another.

Statistics

Variables and Scales

What is independent, what is dependent?

"Does our sentiment analysis approach achieve higher accuracy with features based on part-of-speech tags than without them?"

> Independent: features based on part-of-speech tags Dependent: accuracy

What type of scale?

- 1. Celsius temperature
- 2. Exam grades
- 3. Phone prices
- 4. Colors
- 5. Text length

1. Interval 2. Ordinal 3. Ratio 4. Nominal 5. Ratio

Descriptive statistics

- Measures for summarizing (samples \tilde{X} of) distributions of values X
- Used to describe phenomena

Measures of central tendency

• Mean. The arithmetic average M of a sample of values \tilde{X} of size n M is used for a sample, μ for the whole distribution.

$$M = \frac{1}{n} \sum_{i=1}^{n} \tilde{X}_i$$

• Median. The middle value *Mdn* of the ordered values in a sample Even size: The value halfway between the two middle values

$$Mdn = (\tilde{X}_{\lfloor \frac{n+1}{2} \rfloor} + \tilde{X}_{\lceil \frac{n+1}{2} \rceil}) \; / \; 2$$

• Mode. The value *Md* with the greatest frequency in a sample

Disperson

Measures of dispersion

• Range. The distance r between minimum and maximum

$$r = \tilde{X}_{max} - \tilde{X}_{min}$$

• Variance. The mean s^2 of all values' squared differences to the mean

s is used for a sample, σ for the whole distribution.

biased :
$$s^2 = \frac{1}{n} \sum_{i=1}^n (\tilde{X}_i - M)^2$$
 unbiased : $s^2 = \frac{1}{n-1} \sum_{i=1}^n (\tilde{X}_i - M)^2$

• Standard deviation. The square root *s* of the variance

$$s=\sqrt{s^2}$$

Biased vs. unbiased variance

- The biased variance formula tends to underestimate the real variance of the distribution.
- For samples, the unbiased variance formula is used in statistics.

The division by n-1 instead of n corrects for the small sample size.Introduction to NLP VEmpirical Methods© Wachst

Example

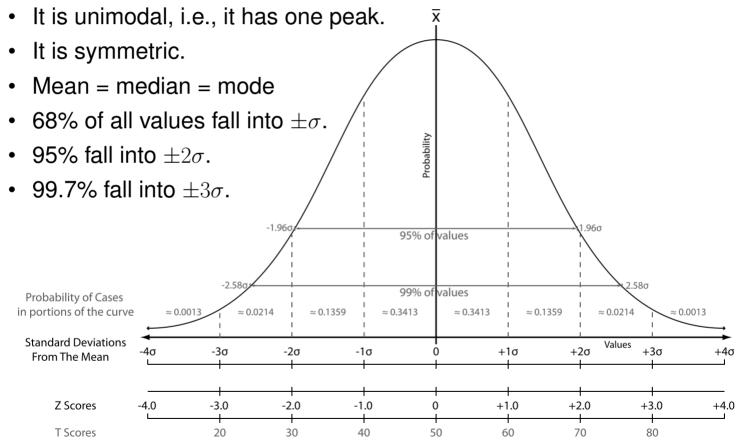
Measures for an ordered sample of 10 values

$$\begin{split} \tilde{X} &= (1, 3, 3, 3, 5, 6, 6, 7, 10, 15) \\ M &= \frac{1}{10} \sum_{i=1}^{10} \tilde{X}_i = 5.9 \\ Mdn &= (\tilde{X}_4 + \tilde{X}_5) / 2 = 5.5 \\ Md &= 3 \\ r &= \tilde{X}_{10} - \tilde{X}_1 = 14 \\ s^2 &= \frac{1}{9} \sum_{i=1}^{10} (\tilde{X}_i - M)^2 \approx 15.97 \\ s &= \sqrt{s^2} \approx 4.00 \end{split}$$

Normal Distribution

Normal distribution (aka Gaussian distribution)

• The frequency distribution that follows a normal curve



Standard Scores

Standard score

• Indicates how many standard deviations a value is away from the mean of a distribution *X*

z-score

• Indicates the precise location of a value X_i within a distibution X

Positive if above the mean, negative otherwise

$$z = rac{X_i - \mu}{\sigma}$$
 approximated as $z = rac{ ilde{X}_i - M}{s}$

t-score

- Transforms a value \tilde{X}_i from a sample of size n into a standardized comparable form

Usually used for small samples (with less than ${\sim}30$ values)

$$t = \frac{\tilde{X}_i - M}{s/\sqrt{n}}$$

Introduction to NLP V Empirical Methods

© Wachsmuth 2023 43

Inferential Statistics

Inferential statistics

- Procedures that help study *hypotheses* based on values
- Used to make inferences about a distribution beyond a given sample

Two competing hypotheses

• Research hypothesis (*H*). Prediction about how a change in variables will cause changes in other variables.

"There is a statistically significant difference between the RMSE of our approach and the RMSE reported by Persing et al. (2015)."

• Null hypothesis (H_0) . Antithesis to H.

"There is *no* statistically significant difference between the RMSE of our approach and the RMSE reported by Persing et al. (2015)."

• If H_0 is true, then any results observed in an experiment that support H are due to chance or sampling error.

Inferential Statistics

Hypotheses

Two types of hypotheses

• Directional. Specifies the direction of an expected difference

"The RMSE of our approach is statistically significantly lower than the RMSE reported by Persing et al. (2015)."

• Non-directional. Specifies only that any difference is expected

"There is a statistically significant difference between the RMSE of our approach and the RMSE reported by Persing et al. (2015)."

Good hypotheses (Rockinson-Szapkiw, 2013)

- Founded in a problem statement and supported by research
- Testable, i.e., it is possible to collect data to study the hypothesis
- States an expected relationship between variables
- Phrased as simply and concisely as possible

Hypothesis test (aka statistical significance test)

- A statistical procedure that determines how likely it is that the results of an experiment are due to chance or sampling error
- Tests whether a null hypothesis H_0 can be rejected (and hence, H can be accepted) at some chosen *significance level*

Significance level α

- The accepted risk (in terms of a probability) that H_0 is wrongly rejected Usually, α is set to 0.05 (default) or to 0.01.
- A choice of α = 0.05 means that there is no more than 5% chance that a potential rejection of H_0 is wrong.

In other words, with \geq 95% confidence a potential rejection is correct.

p-value

- The likelihood (in terms of a probability) that results are due to chance
- If $p \leq \alpha$, H_0 is rejected. The results are seen as statistically significant.
- If $p > \alpha$, H_0 cannot be rejected.

Testing a Hypothesis

Four steps of hypothesis testing

- 1. Hypothesis. State H and H_0 .
- 2. Significance level. Choose α (always *before* the test).
- 3. Testing. Carry out an appropriate hypothesis test to get the *p*-value.
- 4. Decision. Depending on α and p, reject H_0 or fail to reject it.

I CAN'T BELIEVE SCHOOLS ARE STILL TEACHING KIDS ABOUT THE NULL HYPOTHESIS. I REMEMBER READING A BIG STUDY THAT CONCLUSIVELY DISPROVED IT HEARS AGO.

What Test to Choose

Hypothesis tests

- A significance test needs to be chosen that fits the data.
- Different tests exist that make different assumptions about the data
 More on assumptions on the next slide

Parametric vs. non-parametric tests

- Parametric. More powerful and precise, i.e., it is more likely to detect a significant effect when one truly exists
- Non-parametric. Fewer assumptions and, thus, more often applicable
- Each parametric test has a non-parametric correspondent.

Parametric test	Non-parametric correspondent
One-sample and dependent <i>t</i> -test	Wilcoxon Signed-Rank Test
Independent t-test	Mann-Whitney Test
One way, between group ANOVA	Kruskal-Wallis
One way, repeated measures ANOVA	Friedman Test

Assumptions

Assumptions of all hypothesis tests

- Sampling. The sample is a random sample from the distribution. Notice: In NLP, each "instance" of a sample usually consists of multiple texts.
- Values. The values within each variable are independent.

Assumption of all parametric tests

- Scale. The dependent variable has an interval or ratio scale.
- Distribution. The given distributions are normally distributed. Tested by checking histograms or by using normality tests, e.g., the Shapiro-Wilk test.
- Variance. Distributions that are compared have similar variances. Tested using Levene's Test, Bartlett's test, or scatterplots and Box's M.

Test-specific assumptions

- In addition, specific tests may have specific assumptions.
- Depending on which are met, an appropriate test is chosen.

Student's *t*-test

- A parametric hypothesis test for small samples ($\sim n \leq$ 30)
- Computes a *t*-score from which significance can be derived
- Types. One-sample *t*-test, dependent *t*-test, independent *t*-test The term *student* was simply used as a pseudonym by the inventor.

Test-specific assumptions

- The independent variable has a nominal scale.
- *t*-tests are robust over moderate violations of the normality assumption.

One-tailed vs. two-tailed

- One-tailed. Test a directional hypothesis
- Two-tailed. Tests a non-directional hypothesis

One sample vs. paired samples

- One sample. A sample mean is compared to a known value.
- Paired samples. Two sample means are compared to each other.

t-Score

t-distribution

- Variation of the normal distribution for small sample sizes
- Dependent on the *degrees of freedom (DoF)* in an experiment Put simply, DoF is the number of potential variations in the computation of a value.
- Statistics libraries (e.g., in Python) can compute *t*-distributions.
- Otherwise, tables exist with the significance confidences of *t*-values.

https://en.wikipedia.org/wiki/Student%27s_t-distribution

	95%	97.5%	99%	99.5%	99.9%	99.95%	One-tailed
DoF	90%	95%	98%	99%	99.8%	99.9%	Two-tailed
3	2.353	3.182	4.541	5.841	10.21	12.92	
4	2.132	2.776	3.747	4.604	7.173	8.610	
	•••						

How to use this table?

- Compare *t*-score with value at given DoF and α (= 1 confidence).
- If *t*-score > value, then H_0 can be rejected; otherwise not.

One-Sample *t*-Test

One-sample *t*-test

- Compares the mean M of a sample \tilde{X} of size n from a distribution X to a known distribution mean μ
- n-1 degrees of freedom (since the *n*-th value is implied by *M*)

Example research question

• "Does our essay grader improve over the best result reported so far?"

 H_0 . "The RMSE of our approach is *not* statistically significantly lower than the RMSE reported by Persing et al. (2015)."

Process

- 1. Compute the mean M of all sample values \tilde{X} .
- 2. Compute the variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^n (\tilde{X}_i M)^2$
- 3. Compute the standard deviation of the distribution of means: $s_M = \sqrt{\frac{s^2}{n}}$ Also called *standard error*; division by *n* normalizes into the *t*-distribution

4. Compute the *t*-score:
$$t = \frac{M-\mu}{S_M}$$

Example: One-Tailed One-Sample *t*-Test

"The essay grading approach achieves a lower RMSE than 0.244"

1. State hypotheses and define significance level.

H: **RMSE** - 0.244 < 0 *H*₀: **RMSE** $- 0.244 \ge 0$ $\alpha = 0.05$

2. Given a sample (say, n = 5), compute RMSE values.

 $\tilde{X} = (0.226, 0.213, 0.200, 0.268, 0.225)$

3. Compute sample mean, variance, and standard error.

$$M = \frac{1}{5} \cdot (0.226 + 0.213 + 0.200 + 0.268 + 0.225) = 0.226$$

$$s^{2} = \frac{(0.226 - 0.226)^{2} + (0.213 - 0.226)^{2} + (0.200 - 0.226)^{2} + (0.268 - 0.226)^{2} + (0.225 - 0.226)^{2}}{4} = 0.00065$$

$$s_{M} = \sqrt{\frac{0.00065}{5}} = 0.0114$$

4. Compute *t*-score and make decision.

 $t = \frac{0.244 - 0.226}{0.0114} = 1.579$ **4 DoFs** critical *t*-value from table is 2.132. $\rightarrow 1.579 < 2.132$, so H_0 cannot be rejected.

Dependent *t*-Test

Dependent *t***-test (aka paired-sample test)**

- Compares two samples \tilde{X}, \tilde{X}' of size *n* from the same distribution *X*, taken at different *times* (i.e., they may have changed in between)
- n-1 degrees of freedom

Example research question

• "Does adding POS tags improve our sentiment analysis approach?"

 H_0 . "The accuracy of our approach is not statistically significantly higher with POS tags than without POS tags."

Process

- 1. Compute each difference $\Delta_i = \tilde{X}_i \tilde{X}'_i$ between the paired samples.
- 2. Compute the mean M of all differences Δ .
- 3. Compute the variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (\Delta_i M)^2$
- 4. Compute the standard error: $s_M = \sqrt{\frac{s^2}{n}}$

5. Compute the *t*-score:
$$t = \frac{M-0}{S_M} = \frac{M}{S_M}$$

Independent *t*-Test

Independent *t*-test

- Compares two independent samples \tilde{X}, \tilde{X}' of size *n* from the same distribution *X*
- $2 \cdot (n-1) = 2n-2$ degrees of freedom

Example research question

• "Are the predicted essay grades different from the gold standard?"

 H_0 . "There is no statistically significant difference between the gold standard scores and the scores predicted by the approach."

Process

- 1. Compute the means M, M' of all sample values of \tilde{X}, \tilde{X}' .
- 2. Compute the variances: $s_1^2 = \sum_{i=1}^n \frac{(\tilde{X}_i M)^2}{n-1}$, $s_2^2 = \sum_{i=1}^n \frac{(\tilde{X}'_i M')^2}{n-1}$
- 3. Compute the standard error: $S_M = \sqrt{\frac{s_1^2 + s_2^2}{2}} \cdot \sqrt{\frac{2}{n}}$

4. Compute the *t*-score:
$$t = \frac{M-M'}{S_M}$$

Alternatives

What if the *t*-test assumptions are not met?

- Test-specific assumption. Find other parametric test that is applicable.
- Assumptions of parametric tests. Find applicable non-parametric test. A common case is that the given values are not normally distributed.
- Assumptions of all significance tests. Hypotheses cannot be tested.

Example: Wilcoxon Signed-Rank Test

- Non-parametric alternative to dependent *t*-test, for small sample sizes
- Requires randomly chosen, independent paired samples, dependent variable with interval or ratio scale
- Does not require a normal distribution
- Computes a *z*-score based on a ranking of the differences of the pairs The value can also be checked against a reference table.

Conclusion

Conclusion

Empirical methods

- NLP uses empirical methods for linguistic tasks.
- An annotated text corpus represents the data of a task.
- Approaches are developed and evaluated on corpora.

Evaluation measures

- NLP is usually evaluated for its effectiveness.
- Measures: Accuracy, F₁-score, mean squared error, ...
- Effectiveness is measured in experiments on datasets.

Comparison

- Need to compare approaches to reasonable baselines
- Descriptive and inferential statistics play a role.
- Hypothesis tests check whether a result is better.

References

Some content taken from

- Ng (2018). Andrew Ng. Machine Learning. Lecture slides from the Stanford Coursera course. 2018. https://www.coursera.org/learn/machine-learning.
- Jurafsky and Manning (2016). Daniel Jurafsky and Christopher D. Manning. Natural Language Processing. Lecture slides from the Stanford Coursera course. 2016. https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html.
- Rockinson-Szapkiw (2013). Amanda J. Rockinson-Szapkiw. Statistics Guide. 2013. http://amandaszapkiw.com/elearning/statistics-guide/downloads/ Statistics-Guide.pdf
- Wachsmuth (2015). Henning Wachsmuth: Text Analysis Pipelines Towards Ad-hoc Large-scale Text Mining. LNCS 9383, Springer, 2015.
- Witten and Frank (2005). Ian H. Witten and Eibe Frank: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann Publishers, San Francisco, CA, 2nd edition, 2005.

References

Other references

- Al Khatib et al. (2016). Khalid Al Khatib, Henning Wachsmuth, Johannes Kiesel, Matthias Hagen, and Benno Stein. A News Editorial Corpus for Mining Argumentation Strategies. In Proceedings of COLING 2016, the 26th International Conference on Computational Linguistics: Technical Papers, pages 3433–3443, 2016.
- Al Khatib et al. (2017). Khalid Al-Khatib, Henning Wachsmuth, Matthias Hagen, and Benno Stein. Patterns of Argumentation Strategies across Topics. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1362–1368, 2017.