Introduction to Natural Language Processing

Part VII: NLP using Context-Free Grammars

Henning Wachsmuth

https://ai.uni-hannover.de

Introduction to NLP VII CFGs

© Wachsmuth 2023 1

Learning Objectives

Concepts

- Hierarchical patterns in language
- Probabilitic extensions of grammars
- Use of context-free grammars in NLP

Methods

- Conversion of context-free grammars into Chomsky Normal Form
- Syntact parsing of sentences with the extended CKY algorithm
- Extensions and variations of syntactic parsing

Covered tasks

- Constituency parsing
- Dependency parsing

Outline of the Course

- I. Overview
- II. Basics of Linguistics
- III. NLP using Rules
- IV. NLP using Lexicons
- V. Basics of Empirical Methods
- VI. NLP using Regular Expressions
- VII. NLP using Context-Free Grammars
 - Introduction
 - Probabilistic Context-Free Grammars
 - Constituency Parsing
 - Dependency Parsing
- VIII. NLP using Language Models
 - IX. Practical Issues

Introduction

Grammar

Formal grammars (recap)

- A grammar is a description of the valid structures of a language.
- A formal grammar specifies a set of rules consisting of terminal and non-terminal symbols.

Grammar (Σ, N, S, R)

- Σ An alphabet, i.e., a finite set of terminal symbols, $\Sigma = \{v_1, v_2, \ldots\}$
- N A finite set of non-terminal symbols, $N = \{W_1, W_2, \ldots\}$
- $S~~{\rm A}$ start non-terminal symbol, $S\in N$
- $R~~{\rm A}$ finite set of production rules, $R~\subseteq~(\Sigma\cup N)^+\setminus\Sigma^*~\times~(\Sigma\cup N)^*$

Context-free grammar (CFG)

- A grammar (Σ, N, S, R) is *context-free* if all rules in R are of the form $U \rightarrow V$ with $U \in N$ and $V \in (N \cup \Sigma)^*$.
- A language is context-free, if there is a CFG that defines it.

NLP using Context-Free Grammars

Use of CFGs in NLP

- CFGs tend to be effective for hierarchical structures of language.
- Probabilistic extensions (PCFGs) capture the likeliness of structures.
- CFGs usually define the basis of syntactic parsing.

e NP VP any NP NP N N V N fish people fish tanks

Syntactic parsing (aka full parsing)

- The text analysis that determines the syntactic structure of a sentence
- Used in NLP as preprocessing for many tasks, e.g., relation extraction

Constituencies vs. dependencies

- Constituency parsing. Infers the structure of the phrases in a sentence
- Dependency parsing. Infers the structure of the words' dependencies

NLP using Context-Free Grammars

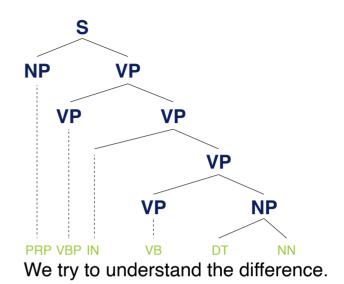
Phrase vs. Dependency Structure (Recap)

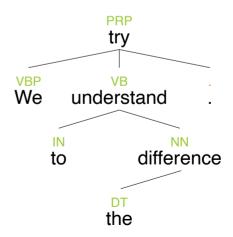
Phrase structure grammar

- Models the constituents of a sentence and how they are composed of other constituents and words
- Constituency (parse) tree. Inner nodes are non-terminals, leafs are terminals

Dependency grammar

- Models the dependencies between the words in a sentence
- Dependency (parse) tree. All nodes are terminals, the root is nearly always the main verb (of the first main clause).



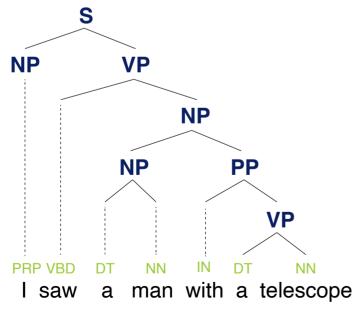


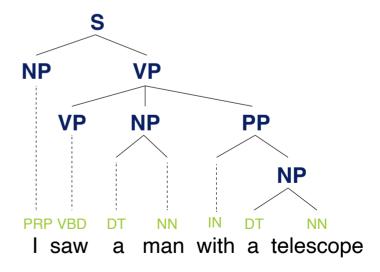
NLP using Context-Free Grammars

Attachment Ambiguity

Example "I saw a man with a telescope"

ttps://pxfuel.com





Context-Free Grammars

Context-free gammars (CFGs) in NLP

- CFGs are particularly used to model the *phrase structure* of sentences.
- A phrase structure grammar is just a CFG with a specific interpretation. We will mostly simply speak of CFGs here.
- For NLP, CFGs are extended by probabilities, as we will see below.

Phrase structure interpretation of non-terminals $N = N_{phr} \cup N_{pos}$

 N_{phr} Phrase types. A finite set of structural non-terminal symbols N_{pos} Part-of-speech tags. A finite set of lexical "pre-terminal" symbols $N_{phr} \cap N_{pos} = \emptyset.$

Phrase structure interpretation of rules $R = R_{phr} \cup R_{pos}$

- R_{phr} A finite set of structure rules of the form $U \to V$ with $U \in N_{phr}$ and $V \in (N_{phr} \cup N_{pos})^*$
- R_{pos} A finite set of lexicon rules of the form $U \rightarrow v$ with $U \in N_{pos}$ and $v \in \Sigma$ In addition to *S*, CFGs in NLP usually include an extra symbol ROOT.

Context-Free Grammars

Example

Example CFG, represented by its rules

Str	Structural rules			exical rules
s1	$S\toNP\;VP$		1	$N \rightarrow people$
s2	$VP\toV\:NP$		12	N o fish
s3	$VP\toV\:NP\:PP$		13	N ightarrow tanks
s4	$NP\toNP\;NP$		14	$N \to rods$
s5	$NP\toNP\;PP$	// binary	15	V ightarrow people
s6	$NP\toN$	// unary	16	$V \to fish$
s7	$NP \rightarrow \varepsilon$	// empty	17	V ightarrow tanks
s8	$PP\toP\:NP$		18	P ightarrow with

Example sentences created by the grammar

"people fish tanks"

"people fish with rods"

Introduction to NLP VII CFGs

Context-Free Grammars

Chomsky Normal Form

Chomsky Normal Form (CNF)

• A CFG is in Chomsky Normal Form if all rules in R are of the forms $U \rightarrow VW$ and $U \rightarrow v$, where $U, V, W \in N$ and $v \in \Sigma^*$.

Tansformation into normal form

- Cleaning. Empties and unaries are removed recursively.
- Binarization. *n*-ary rules are divided by using new non-terminals, n > 2.
- Any CFG can be transformed into CNF without changing the language.
- This may result in different parse trees for words the language.

Why transforming?

- Restricting a CFG in such a way is key to efficient parsing.
- Binarization is crucial for cubic time.
- Cleaning is not mandatory, but makes parsing quicker and cleaner. More on this further below.

Introduction to NLP VII CFGs

Pseudocode

Signature

- Input. The production rules R of a CFG
- Output. The production rules R^* of the normalized version of the CFG

toChomskyNormalForm (Production rules R)

```
while an empty (U \to \varepsilon) \in R do
 1.
                    R \leftarrow R \setminus \{U \rightarrow \varepsilon\}
 2.
                    for each rule (V \rightarrow V_1 \dots V_k U W_1 \dots W_l) \in R do //k, l \ge 0
 3.
                          R \leftarrow R \cup \{V \rightarrow V_1 \dots V_k \mid W_1 \dots W_l\}
 4.
             while a unary (U \rightarrow V) \in R do
 5.
 6.
                    R \leftarrow R \setminus \{U \to V\}
                   if U \neq V then
 7.
                          for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \cup \{U \to V_1 \dots V_k\}
 8.
                          if not (W \rightarrow V_1 \dots V_k \ V \ W_1 \dots W_l) \in R then
 9.
                                 for each (V \to V_1 \dots V_k) \in R do R \leftarrow R \setminus \{V \to V_1 \dots V_k\}
10.
              while an n-ary (U \rightarrow V_1 \dots V_n) \in R do // n \geq 3
11.
                    R \leftarrow (R \setminus \{U \to V_1 \dots V_n\}) \cup \{U \to V_1 U \_ V_1, U \_ V_1 \to V_2 \dots V_n\}
12.
13.
              return R
```

Example: Empties (Removal)

Structural rules		Le	xical rules
s1	S ightarrow NP VP	1	$N \rightarrow people$
s2	$VP o V \ NP$	12	N o fish
s3	$VP o V \ NP \ PP$	13	$N \rightarrow tanks$
s4	$NP\toNP\;NP$	14	$N \to rods$
s5	$NP\toNP\;PP$	15	V ightarrow people
s6	$NP\toN$	16	$V \to fish$
s7	$NP \rightarrow \varepsilon$	17	V ightarrow tanks
s8	$PP \to P NP$	18	P ightarrow with

Removal of empties

• Add new rules for each rule where *NP* occurs on the right side. Pseudocode lines 2–4.

Example: Empties (Addition)

Stri	Structural rules Lexical rules				
s1	S o NP VP	11	N ightarrow people		
s1'	$S \to VP$	12	N o fish		
s2	VP o V NP	13	$N \rightarrow tanks$		
s2'	$VP \to V$	4	$N \to rods$		
s3	$VP o V \ NP \ PP$	15	V ightarrow people		
s3'	$VP o V extsf{PP}$	16	$V \to fish$		
s4	$NP o NP extsf{NP}$	17	V ightarrow tanks		
s4'	NP ightarrow NP	18	P ightarrow with		
s5	$NP o NP extsf{PP}$				
s5'	NP o PP				
s6	$NP \to N$				
s8	$PP \to P NP$				
s8'	PP o P				

Example: Unaries (Removal)

Stru	uctural rules	Le	xical rules
s1	S o NP VP	1	$N \rightarrow people$
s1'	$S \to VP$	12	N o fish
s2	$VP \to V \; NP$	13	$N \rightarrow tanks$
s2'	$VP\toV$	14	$N \to rods$
s3	$VP \to V \ NP \ PP$	15	V ightarrow people
s3'	$VP\toV\;PP$	16	$V \to fish$
s4	$NP o NP extsf{NP}$	17	V ightarrow tanks
s4'	NP o NP	18	P ightarrow with
s5	$NP o NP extsf{PP}$		
s5'	$NP\toPP$		
s6	NP ightarrow N		
s8	$PP \to P NP$		
s8'	$PP \to P$		

Example: Unaries (Addition)

Stru	ctural rules	Lexical rules
s1	S ightarrow NP VP	I1 $N \rightarrow people$
s2	$VP \to V \; NP$	I2 $N \rightarrow fish$
s2"	$S \to V \; NP$	I3 N \rightarrow tanks
s2'	$VP\toV$	I4 $N \rightarrow rods$
s2"'	$S\toV$	I5 V \rightarrow people
s3	$VP o V \ NP \ PP$	If $V \rightarrow fish$
s3"	S ightarrow V NP PP	I7 $V \rightarrow tanks$
s3'	$VP o V extsf{PP}$	18 $P \rightarrow with$
s3"'	S o V PP	
s4	$NP o NP \ NP$	
s4'	NP o NP	
s5	$NP o NP extsf{PP}$	
s5'	NP o PP	
s6	NP ightarrow N	
s8	PP o P NP	
s8'	$PP\toP$	

Example: Unaries 2 (Removal)

Stru	ctural rules	Le	xical rules
s1	S ightarrow NP VP	1	$N \rightarrow people$
s2	$VP o V \ NP$	12	N ightarrow fish
s2"	$S \to V \: NP$	13	$N \rightarrow tanks$
s2'	VP ightarrow V	4	N ightarrow rods
s2"'	$S\toV$	15	V ightarrow people
s3	$VP ightarrow V \ NP \ PP$	16	V ightarrow fish
s3"	$S \to V \; NP \; PP$	17	V ightarrow tanks
s3'	$VP o V extsf{PP}$	18	P ightarrow with
s3"'	$S \to V \; PP$		
s4	$NP o NP \ NP$		
s4'	NP o NP		
s5	$NP o NP extsf{PP}$		
s5'	$NP\toPP$		
s6	NP ightarrow N		
s8	PP o P NP		
s8'	$PP\toP$		

Example: Unaries 2 (Addition)

Stru	ctural rules	Lex	cical rules
s1	S ightarrow NP VP	1	$N \rightarrow people$
s2	VP o V NP	12	N o fish
s2"	$S \to V \; NP$	13	N ightarrow tanks
s2""	$S\toV$	4	N ightarrow rods
s3	$VP o V \ NP \ PP$	15	V ightarrow people
s3"	S o V NP PP	15'	VP ightarrow people
s3'	$VP o V extsf{PP}$	16	$V \rightarrow fish$
s3"'	S o V PP	l6'	VP o fish
s4	$NP o NP extsf{NP}$	17	V ightarrow tanks
s4'	NP ightarrow NP	17'	$VP \rightarrow tanks$
s5	$NP o NP extsf{PP}$	18	P ightarrow with
s5'	NP o PP		
s6	NP ightarrow N		
s8	PP o P NP		
s8'	$PP \to P$		

Example: Unaries 3 (Removal)

Stru	ctural rules	Lex	cical rules
s1	S ightarrow NP VP	1	$N \rightarrow people$
s2	$VP o V extsf{NP}$	12	$N \rightarrow fish$
s2"	$S \to V \: NP$	13	N ightarrow tanks
s2"'	$S\toV$	4	N ightarrow rods
s3	$VP o V \ NP \ PP$	15	V ightarrow people
s3"	$S o V \ NP \ PP$	15'	VP ightarrow people
s3'	$VP o V extsf{PP}$	16	$V \to fish$
s3"'	$S \to V \; PP$	l6'	VP o fish
s4	$NP o NP extsf{NP}$	17	$V \rightarrow tanks$
s4'	NP o NP	17'	VP ightarrow tanks
s5	$NP o NP extsf{PP}$	18	$P \to with$
s5'	NP o PP		
s6	NP ightarrow N		
s8	PP o P NP		
s8'	PP o P		

Example: Unaries 3 (Addition)

Stru	ctural rules	Lex	cical rules
s1	$S \rightarrow NP VP$	1	$N \rightarrow people$
s2	VP o V NP	12	N o fish
s2"	S o V NP	13	N ightarrow tanks
s3	$VP o V \ NP \ PP$	4	$N \to rods$
s3"	S o V NP PP	15	V ightarrow people
s3'	$VP o V extsf{PP}$	15'	VP ightarrow people
s3"'	S o V PP	15"	S ightarrow people
s4	$NP o NP extsf{NP}$	16	V ightarrow fish
s4'	NP o NP	I 6'	VP o fish
s5	$NP o NP extsf{PP}$	I 6"	$S \rightarrow fish$
s5'	NP o PP	17	V ightarrow tanks
s6	$NP\toN$	17'	VP o tanks
s8	PP o P NP	17"	$S \rightarrow tanks$
s8'	$PP \to P$	18	P ightarrow with

Example: Unaries 4–7 (Removal)

Stru	ctural rules	Lex	cical rules
s1	$S \rightarrow NP VP$	1	$N \rightarrow people$
s2	VP o V NP	12	N o fish
s2"	S o V NP	13	$N \rightarrow tanks$
s3	$VP o V \ NP \ PP$	4	N ightarrow rods
s3"	S o V NP PP	15	V ightarrow people
s3'	$VP o V extsf{PP}$	15'	VP ightarrow people
s3"'	S o V PP	15"	S ightarrow people
s4	$NP o NP extsf{NP}$	16	V ightarrow fish
s4'	$NP \to NP$	l6'	VP o fish
s5	$NP o NP extsf{PP}$	l6"	S o fish
s5'	NP o PP	17	V ightarrow tanks
s6	$NP \to N$	17'	VP ightarrow tanks
s8	$PP \to P NP$	17"	$S \rightarrow tanks$
s8'	$PP \to P$	18	$P \to with$

Example: Unaries 4–7 (Addition)

Stru	Structural rules		cical rules
s1	$S \rightarrow NP VP$	1	$NP \rightarrow people$
s2	VP o V NP	12	$NP \to fish$
s2"	S o V NP	13	$NP \rightarrow tanks$
s3	$VP o V \ NP \ PP$	14	$NP \rightarrow rods$
s3"	S o V NP PP	15	V ightarrow people
s3'	$VP o V extsf{PP}$	15'	VP ightarrow people
s3"'	S o V PP	15"	S ightarrow people
s4	$NP o NP extsf{NP}$	16	V ightarrow fish
s5	$NP o NP extsf{PP}$	l6'	VP o fish
s5"	$NP o P extsf{NP}$	l6"	$S \to \text{fish}$
s8	PP o P NP	17	V ightarrow tanks
		17'	VP o tanks
		17"	$S \rightarrow tanks$
		18	P ightarrow with
		18'	$PP \to with$
		18"	$NP \to with$

Example: *n*-aries 1–2 (Removal)

Stru	Structural rules		ical rules
s1	S ightarrow NP VP	1	$NP \rightarrow people$
s2	$VP o V \ NP$	12	$NP \to fish$
s2"	$S \to V \: NP$	13	$\text{NP} \rightarrow \text{tanks}$
s3	$VP o V \ NP \ PP$	4	$NP \to rods$
s3"	S o V NP PP	15	V ightarrow people
s3'	$VP o V extsf{PP}$	15'	VP ightarrow people
s3"'	$S \to V \: PP$	15"	$S \rightarrow people$
s4	$NP o NP extsf{NP}$	16	V ightarrow fish
s5	$NP o NP extsf{PP}$	I 6'	$VP \to fish$
s5"	$NP o P \ NP$	l6"	$S \to fish$
s8	PP o P NP	17	$V \rightarrow tanks$
		17'	$VP \rightarrow tanks$
		17"	$S \rightarrow tanks$
		18	$P \to with$
		18'	$PP \to with$
		18"	$NP \rightarrow with$

Example: *n*-aries 1-2 (Addition) \rightarrow Results in Chomsky normal form!

Structural rules		Lex	Lexical rules	
s1	$S \rightarrow NP VP$	1	$NP \rightarrow people$	
s2	VP o V NP	12	NP o fish	
s2"	S o V NP	13	NP ightarrow tanks	
s3""	$VP \to V \ VP_V$	4	$NP \to rods$	
s3"""	$VPVV \rightarrow NPPP$	15	V ightarrow people	
s3"""	$S ightarrow V \ S_V$	15'	VP ightarrow people	
s3""""	$S_V \to NP PP$	15"	S ightarrow people	
s3'	$VP o V extsf{PP}$	16	V ightarrow fish	
s3"'	S o V PP	l6'	VP o fish	
s4	$NP o NP extsf{NP}$	l6"	$S \to \text{fish}$	
s5	$NP o NP extsf{PP}$	17	$V \rightarrow tanks$	
s5"	$NP o P \ NP$	17'	VP ightarrow tanks	
s8	$PP \to P NP$	17"	$S \rightarrow tanks$	
		18	$P \rightarrow with$	
		18'	PP ightarrow with	
		18"	$NP \to with$	

Probabilistic context-free grammar (PCFG)

• A CFG where each production rule is assigned a probablility

PCFG $(\Sigma, N, S, R, \mathbf{P})$

 ${\it P}~$ A probability function $R \rightarrow [0,1]$ from production rules to probabilities, such that

$$\forall U \in N : \sum_{(U \to V) \in R} P(U \to V) = 1$$

 $(\Sigma, N, S, R \text{ as before})$

Probabilities

- Trees. The probability P(t) of a tree t is the product of the probabilities of the rules used to generate it.
- Strings. The probability *P*(*s*) of a string *s* is the sum of the probabilities of the trees which yield *s*.

Introduction to NLP VII CFGs

Example

Example PCFG

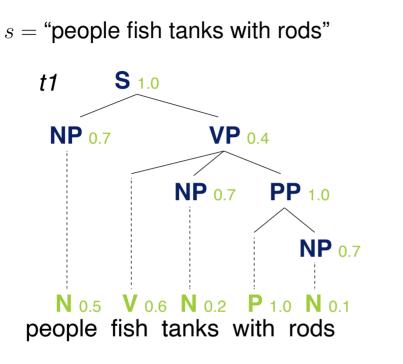
Structural rules			Lexical rules		
s1	$S\toNP\;VP$	1.0	1	$N \rightarrow people$	0.5
s2	$VP\toV\:NP$	0.6	12	N ightarrow fish	0.2
s3	$VP \to V \; NP \; PP$	0.4	13	N ightarrow tanks	0.2
s4	$NP\toNP\;NP$	0.1	14	$N \to rods$	0.1
s5	$NP\toNP\;PP$	0.2	15	$V \to people$	0.1
s6	$NP\toN$	0.7	16	$V \to fish$	0.6
s7	$PP\toP\:NP$	1.0	17	$V \to tanks$	0.3
			18	$P \to with$	1.0

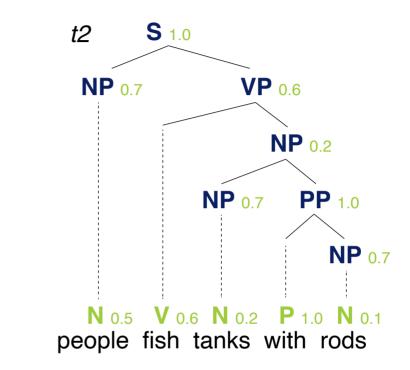
Notice

- For parsing, a PCFG should be transformed to Chomsky Normal Form or at least binarized.
- The origin of the probabilities is clarified below.

Introduction to NLP VII CFGs

Example Probabilities





Probabilities

 $P(t_1) = 1.0 \cdot 0.7 \cdot 0.4 \cdot 0.5 \cdot 0.6 \cdot 0.7 \cdot 1.0 \cdot 0.2 \cdot 1.0 \cdot 0.7 \cdot 0.1 = 0.0008232$ $P(t_2) = 1.0 \cdot 0.7 \cdot 0.6 \cdot 0.5 \cdot 0.6 \cdot 0.2 \cdot 0.7 \cdot 1.0 \cdot 0.2 \cdot 1.0 \cdot 0.7 \cdot 0.1 = 0.00024696$ $P(s) = P(t_1) + P(t_2) = 0.0008232 + 0.00024696 = 0.00107016$

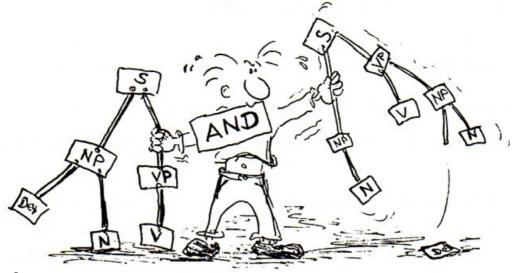
Constituency parsing

- The text analysis that determines the phrase structure of a sentence with respect to a given grammar
- Often used in NLP as preprocessing where syntax is important
- Parsing works robust across domains of well-formatted texts.

Downstream tasks based on parsing

- Named entity recognition in complex domains (e.g., biology)
- Relationship extraction, both for semantic and temporal relations
- Coreference resolution, to identify candidate matching references
- Opinion mining regarding aspects of products or similar
- Machine translation, to analyze the source sentence
- Question answering, particularly in high-precision scenarios ... and so forth

Classical Parsing (before \sim 1990)



Classical parsing

- Hand-crafted CFG, along with a lexicon
- Usage of CFG-based systems to prove parses from words
- This scales badly and fails to give high language coverage.

Example "Fed raises interest rates 0.5% in effort to control inflation"

- Minimal grammar. 36 possibly parse trees
- Real-size broad-coverage grammar. Millions of parse trees

Introduction to NLP VII CFGs

Classical Parsing: Problems and Solutions

Grammars with categorical constraints

- Limitation of the chance for unlikely parse trees of sentences
- But constraints reduce the coverage of a grammar.
- In classical parsing, typically \sim 30% of all sentences cannot be parsed.

Less constrained grammars

- Can parse more sentences
- But simple sentences end up with even more parse trees.
- No way to choose between different parse trees

Solution: Statistical parsing

- Very loose grammars that admit millions of parse trees for sentences
- · Mechanisms that find the most likely parse tree of a sentence quickly
- Nowadays, most parsers are based on statistics (probabilities).

Statistical Parsing

How to build a statistical parser?

- Statistical parsers are based on PCFGs (or varations thereof).
- The rules and probabilities of the PCFGs are derived from *treebanks*.

Treebanks

- A treebank is corpus with tree-structured annotations One of the most used treebanks is the *Penn Treebank*, PTB (Marcus et al., 1993).
- Building a treebank is an expensive manual process done by experts.
- Slower than building a grammar, but the benefits outweigh the costs

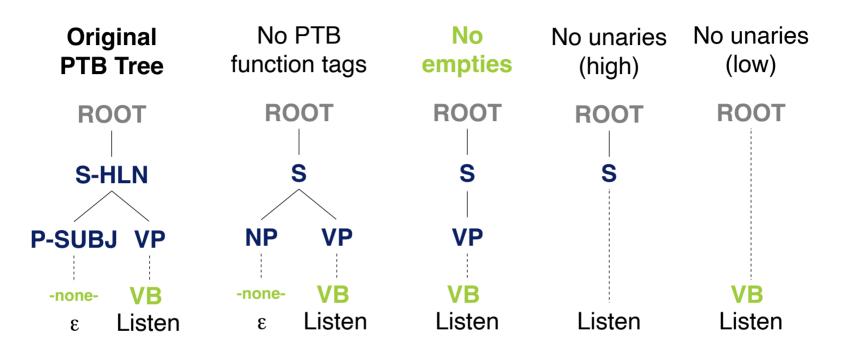
Benefits of treebanks

- Statistics. Frequencies and distributional information
- Development. Reusable for many parsers, POS taggers, etc.
- Evaluation. Basis for evaluating a developed system
- Language. Valuable resource for linguistics in general

Example PTB Sentence Representation

```
( (S
  (NP-SBJ (DT The) (NN move))
  (VP (VBD followed)
    (NP
      (NP (DT a) (NN round))
      (PP (IN of)
         (NP
           (NP (JJ similar) (NNS increases))
           (PP (IN by)
             (NP (JJ other) (NNS lenders)))
           (PP (IN against)
             (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
    (, ,)
    (S-ADV
      (NP-SBJ (-NONE- *))
      (VP (VBG reflecting)
         (NP
           (NP (DT a) (VBG continuing) (NN decline))
           (PP-LOC (IN in)
             (NP (DT that) (NN market)))))))
  (..)))
```

From Treebank to Chomsky Normal Form



Notice

- No unaries. Low preferred over high, since it keeps lexical information
- No empties. Enough for parsing and makes a reconstruction of the original parse tree easier

Attachment Ambiguity

Key parsing problem

• Correct attachment of the various constituents in a sentence, such as prepositional phrases, adverbial phrases, infinitives, ...

"The board approved	its acquisition	ightarrow attaches to "approved"
	by Royal Trustco Ltd.	ightarrow attaches to "its acquisition"
	of Toronto	ightarrow attaches to "by Royal Trustco Ltd."
	for \$27 a share	ightarrow attaches to "its acquisition"
	at its monthly meeting."	ightarrow attaches to "approved for \$27 a share"

How to find the correct attachment?

- Potential attachments grow exponentially with number n of constituents
- The problem is *AI complete*.

"I saw a man with a telescope."

Words predict attachment well.

"Moscow sent more than 100,000 soldiers into Ukraine."

Constituency Parsing

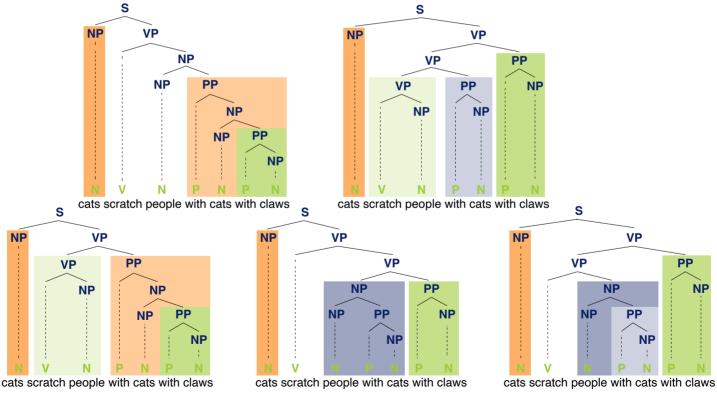
Introduction to NLP VII

CFGs

Attachment Ambiguity in Statistical Parsing

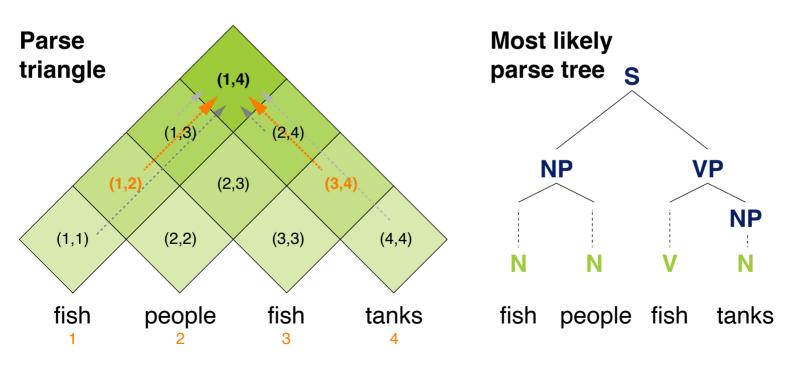
Two problems to solve in statistical parsing

- 1. Choose the most likely parse (according to statistics).
- 2. Avoid to do repeated work (algorithmically).



Cocke-Kasami-Younger (CKY) parsing (aka CYK parsing)

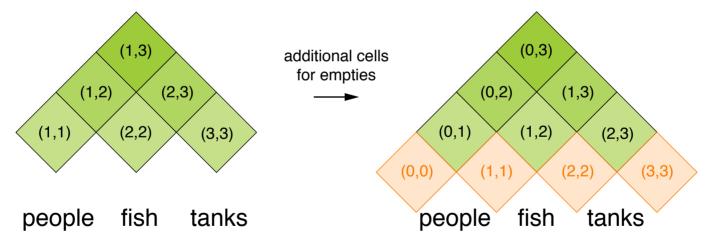
- A dynamic programming parsing algorithm based on PCFG in CNF
- Goal. Get the most likely constituency parse tree for a sentence.
- Asympotically strong: cubic time, quadratic space
 With respect to the length of the sentence and the number of non-terminals



Extension

Extended CKY Parsing

- A parser based on a binarized PCFG, introduced below
- Includes unaries without increasing asymptotic complexity Makes the algorithm more complicated, but keeps the grammar smaller
- Empties are treated like unaries, after adding a cell row.



Binarization is needed for cubic time

• Without, CKY parsing does not work by concept. Why not?

Other parsers may not require a binarized grammar, but then do binarization implicitly. Introduction to NLP VII CFGs ©Wachsmuth 2023 39

Pseudocode (1 out of 2)

Signature

- Input. A sentence (represented by a list of tokens), a binarized PCFG
- Output. The most likely parse tree of the sentence

```
extendedCKYParsing(List<Token> tokens, PCFG (\Sigma, N, S, R, P))
```

```
double [][][] probs \leftarrow new double[#tokens][#tokens][#N]
 1.
 2.
          for int i \leftarrow 1 to \#tokens do // Lexicon rules (and unaries)
 3.
              for each U \in N do
                  if (U \rightarrow tokens[i]) \in P then
 4.
 5.
                      probs[i][i][U] \leftarrow P(U \rightarrow tokens[i])
 6.
             boolean added \leftarrow 'true' // As of here: Handle unaries
 7.
             while added = 'true' do
 8.
                  added \leftarrow 'false'
 9.
                  for each U, V \in N do
10.
                      if probs[i][i][V]>0 and (U \rightarrow V) \in P then
11.
                           double prob \leftarrow P(U \rightarrow V) \cdot \text{probs}[i][i][V]
12.
                           if prob > probs[i][i][U] then
13.
                               probs[i][i][U] \leftarrow prob
14.
                               added \leftarrow 'true'
15.
         // ... continued on next slide...
```

Pseudocode (2 out of 2)

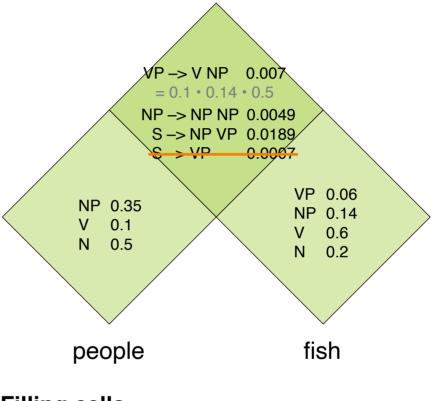
	// lines 1-14 on previous slide
15.	for int length \leftarrow 2 to #tokens do // Structural rules
16.	for int beg \leftarrow 1 to #tokens - length + 1 do
17.	int end \leftarrow beg + length - 1
18.	for int split \leftarrow beg to end-1 do
19.	for int $U, V, W \in N$ do
20.	int prob \leftarrow probs[beg][split][V] \cdot
	$probs[split+1][end][W] \cdot P(U \rightarrow V W)$
21.	<pre>if prob > probs[beg][end][U] then</pre>
22.	$probs[beg][end][U] \leftarrow prob$
23.	boolean added \leftarrow `true' // As of here: Handle unaries
24.	while added do
25.	added \leftarrow 'false'
26.	for U,V \in N do
27.	prob $\leftarrow P(U \rightarrow V) \cdot probs[beg][end][V];$
28.	<pre>if prob > probs[beg][end][U] then</pre>
29.	$probs[beg][end][U] \leftarrow prob$
30.	added ← `true'
31.	return buildTree(probs) // Reconstruct tree from triangle

Example

A binarized PCFG

Structural rules

s1	$S \to NP \; VP$	0.9
s1'	$S\toVP$	0.1
s2	$VP\toV\:NP$	0.5
s2'	$VP\toV$	0.1
s3'	$VP \to V \; VP_V$	0.3
s3"	$VP\toV\:PP$	0.1
s3"'	$VP_V\toNP\;PP$	1.0
s4	$NP\toNP\;NP$	0.1
s5	$NP\toNP\;PP$	0.2
s6	$NP\toN$	0.7
s7	$PP \to P \: NP$	1.0



Filling cells

- Compute probabilities for each cell.
- Keep only highest for each left side.

Run-time Complexity

Run-time of pseudocode part 1

- $\mathcal{O}(n)$ times for-loop in lines 1–14, n = # tokens
- $\mathcal{O}(|N|)$ times for-loop in lines 3–5
- $\mathcal{O}(|N|^2)$ times while-loop in lines 7–14

Run-time of pseudocode part 2

- $\mathcal{O}(n)$ times for-loop in lines 15–30
- $\mathcal{O}(n)$ times for-loop in lines 16–30
- $\mathcal{O}(n)$ times for-loop in lines 18–22
- $\mathcal{O}(|N|^3)$ times for-loop in lines 19–22
- $\mathcal{O}(|N|^2)$ times while-loop in lines 24–30
- $\mathcal{O}(n^2)$ for building the tree in line 31

Overall run-time

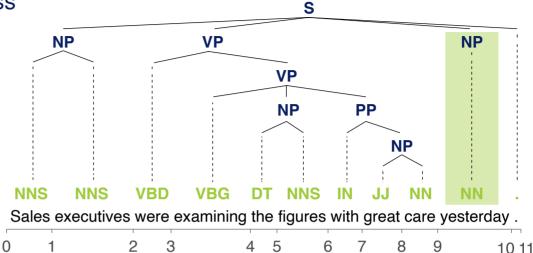
- Extended CKY parsing has a run-time of $\mathcal{O}(n^3 \cdot |N|^3)$.
- Several optimizations possible, but asymptotic complexity remains

 $\mathcal{O}(n\cdot |N|^2)$ for part 1 in total

 $\mathcal{O}(n^3 \cdot |N|^3)$ for part 2 in total

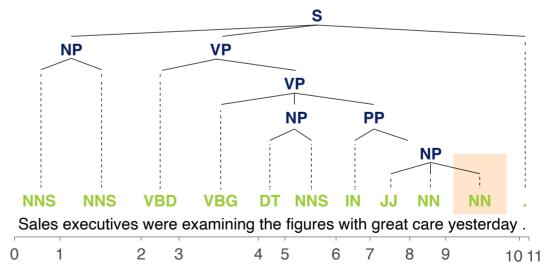
Evaluation of Effectiveness

Gold standard brackets S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6:9), NP-(7:9), NP-(9:10)



Candidate brackets

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6:10), NP-(7:10)



CKY Parsing Evaluation of Effectiveness

8 gold standard brackets

S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6:9), NP-(7:9), NP-(9:10)

7 candidate brackets

S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6:10), NP-(7:10)

Effectiveness in the example

- Labeled precision (LP). 0.429 = 3 / 7
- Labeled recall (LR). 0.375 = 3/8
- Labeled F_1 -score. $0.400 = 2 \cdot LP \cdot LR / (LP + LR)$
- POS tagging accuracy. 1.000 = 11 / 11

Effectiveness of CKY in general (Charniak, 1997)

- Labeled $F_1 \sim 0.87$ when trained and tested on Penn Treebank
- CKY is robust, i.e., it parses almost anything (but with low probabilities).

Lexicalized Parsing

Limitations of standard PCFGs

• PCFGs assume that the plausibility of structures is independent of the words used, i.e., each rule has a fixed probability.

 $P(VP \rightarrow V NP NP) = 0.00151$

• However, specific words may make certain rules particularly (un)likely.

Lexicalization of PCFGs (Collins, 1999)

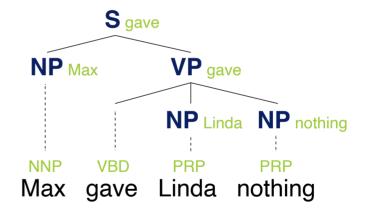
• Condition the probability of a rule on the *head word* of the given phrase.

 $P(VP \rightarrow V NP NP | \text{"said"}) = 0.00001$ $P(VP \rightarrow V NP NP | \text{"gave"}) = 0.01980$

• Rationale. The head word represents a phrase's structure and meaning well.

Lexicalized parsing

• Constituency parsing based on a lexicalized PCFG



Lexicalized Parsing

"Unlexicalization" of PCFGs

Hypothesis

- Lexical selection between content words is not crucial for parsing.
- More important are grammatical features, such as verb form, presence of a verb auxiliary, ...

Unlexicalized parsing (Klein and Manning, 2003)

- Rules are not systematically specified down to the level of lexical items.
- No semantic lexicalization for nouns, such as "NP_{stocks}"
- Instead: Structural "lexicalization", such as "NP^S_{CC}" Meaning: Parent node is "S" and noun phrase is coordinating.
- Keep functional lexicalization of closed-class words, such as "VB-have"

Learned unlexicalized parsing (Petrov and Knight, 2007)

- Learn extra information for a non-terminal based on training data.
- Parse based on unlexicalized PCFG.

Constituency Parsing

Evaluation Results

Comparison of the different approaches

• All in exactly the same setting on the Penn Treebank

Approach	Source	Labeled F_1
Extended CKY parsing	Charniak (1997)	0.87
Lexicalized parsing	Collins (1999)	0.89
Unlexicalized parsing	Klein and Manning (2003)	0.86
Learned unlexicalized parsing	Petrov and Klein (2007)	0.90
Combining parsers	Fossum and Knight (2009)	0.92
Transformer-based span parsing	Tian et al. (2020)	0.96

Notice

- Neural parsers nowadays outperform probabilistic parsers significantly.
- Still, many build on core ideas of CKY parsing, like Tian et al. (2020). The details are beyond the scope of this course.

Dependency Parsing

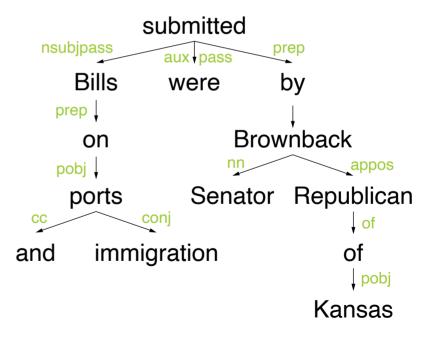
Dependency grammar

- A grammar that models the syntactic structure of a sentence by linking its tokens with binary asymmetric relations
- Relations, called *dependencies*, define grammatical connections. Subject, prepositional object, apposition, etc.

Graph representation

- Each node is a token.
- An edge connects a *head* with a *dependent* node.
- The nodes and edges form a fully connected tree with a single head.

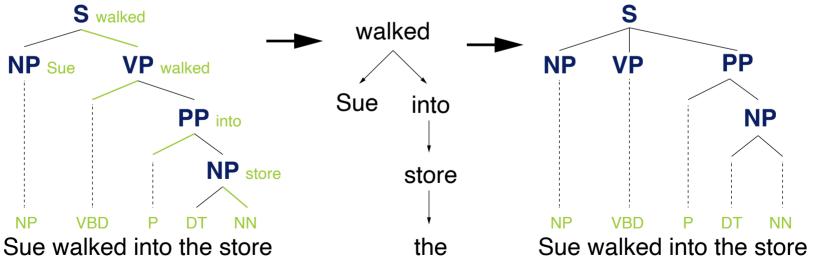
If available, the main verb of the first main clause is the head.



Dependency Grammars vs. Phrase Structure Grammars

Dependency vs. phrase structure

- CFGs do not have the notion of a head officially.
- Modern statistical parsers usually include phrasal "head rules". For example, the head of an NP is a noun, number, adjective, ...
- Given head rules, constituencies can be converted to dependencies.
- Dependencies can be converted back to constituencies, but a word's dependents will be on the same level.



Identification of Dependencies

Selected features of dependencies

- Breaks. Dependencies rarely span intervening verbs or punctuation.
- Valency. Heads have usual numbers of dependents on each side.
- Affinities. Some dependencies are more plausible than others.

For example "issues \rightarrow the" rather than "the \rightarrow issues".

Discussion of the outstanding issues was completed .

Example "Retail sales drop in April cools afternoon market trading."

"sales"	dependent of?	\rightarrow "drop"
"April"	dependent of?	\rightarrow "in"
"afternoon"	dependent of?	\rightarrow "trading"
"trading"	dependent of?	\rightarrow "cools"

Parsing Methods

Dynamic programming (Eisner, 1996)

- Lexicalized PCFG parsing, similar to CKY would need $\mathcal{O}(n^5)$ steps.
- When forcing parse structures with heads at the ends, $\mathcal{O}(n^3)$ is possible.

Graph algorithms (McDonald et al., 2005)

- Build a maximum spanning tree for a sentence. Score dependencies independently using machine learning. $\rightarrow O(n^3)$.
- More accurate on long dependencies and dependencies near the root.

Transition-based parsing (Nivre et al., 2008)

- Shift from left to right over a sentence. Make greedy attachment choices guided by a machine learning classifier. $\rightarrow O(n)$
- More accurate on short dependencies and disambiguation of core grammatical functions.

Conclusion

Conclusion

NLP using context-free grammars (CFGs)

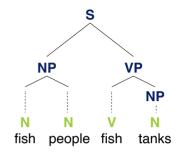
- CFGs model hierarchical structure.
- PCFGs extend CFGs by probabilities (via statistics).
- In NLP, PCFGs used for phrase structure of sentences

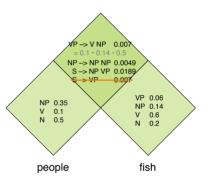
Syntactic parsing based on grammars

- PCFGs used for CKY constituency parsing
- Extensions include lexicalization and unlexicalization
- Dependency grammars for dependency parsing

Benefits and limitations

- Statistical grammars are a core technique of NLP.
- Creation of large-scale treebanks is very expensive.
- CFGs just model the ways syntax is constructed.





```
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)
    (NP (DT a) (NN round))
    (PP (IN of)
        (NP (JJ similar) (NNS increases))
        (PP (IN by)
          (NP (JJ other) (NNS lenders)))
         (PP (IN against)
          (NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
  (S-ADV
    (NP-SBJ (-NONE- *))
    (VP (VBG reflecting)
         (NP (DT a) (VBG continuing) (NN decline))
        (PP-LOC (IN in)
           (NP (DT that) (NN market))))))
(, ,)))
```

References

Much content and many examples taken from

- Jurafsky and Manning (2016). Daniel Jurafsky and Christopher D. Manning. Natural Language Processing. Lecture slides from the Stanford Coursera course, 2016. https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html.
- Jurafsky and Manning (2009). Daniel Jurafsky and James H. Martin. Speech and Language Processing: An Introduction to Natural Language Processing, Speech Recognition, and Computational Linguistics. Prentice-Hall, 2nd edition, 2009.
- Meyer auf der Heide (2010). Friedhelm Meyer auf der Heide. Einführung in Berechenbarkeit, Komplexität und Formale Sprachen. Begleitmaterial zur Vorlesung, 2010. https://www.hni.uni-paderborn.de/fileadmin/Fachgruppen/ Algorithmen/Lehre/Vorlesungsarchiv/WS_2009_10/Einfuehrung_in_ die_Berechenbarkeit_K_u_f_S/skript.pdf
- Wachsmuth (2015). Henning Wachsmuth: Text Analysis Pipelines Towards Ad-hoc Large-scale Text Mining. LNCS 9383, Springer, 2015.

References

Other references

- **Charniak (1997).** Statistical parsing with a context-free grammar and word statistics. In AAAI-97, Menlo Park. AAAI Press.
- **Collins (1999).** Michael J. Collins. Head-driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia, 1999.
- **Eisner (1996).** Jason M. Eisner. Three New Probabilistic Models for Dependency Parsing: An Exploration. In COLING 1996 Volume 1: The 16th International Conference on Computational Linguistics, 1996.
- Fossum and Knight (2009). Victoria Fossum and Kevin Knight. Combining Constituent Parsers. In Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics, Companion Volume: Short Papers, pages 253–256, 2009.
- Klein and Manning (2003). Dan Klein and Christopher D. Manning. 2003. Accurate Unlexicalized Parsing. In Proceedings of the 41st Annual Meeting of the Association for Computational Linguistics, pages 423–430. 2003.
- Marcus et al. (1993). Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a Large Annotated Corpus of English: The Penn Treebank. Computational Linguistics, 19(2):313–330, 1993.

References

Other references

- McDonald et al. (2005). Ryan McDonald, Fernando Pereira, Kiril Ribarov, and Jan Hajič. Non-Projective Dependency Parsing using Spanning Tree Algorithms. In Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pages 523–530, 2005.
- **Nivre (2008).** Joakim Nivre. Algorithms for Deterministic Incremental Dependency Parsing. Computational Linguistics, 34(4):513–553, 2008.
- Petrov and Klein (2007). Slav Petrov and Dan Klein. Improved Inference for Unlexicalized Parsing. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Proceedings of the Main Conference, pages 404–411, 2007.
- **Tian et al. (2020).** Yuanhe Tian, Yan Song, Fei Xia, and Tong Zhang. Improving Constituency Parsing with Span Attention. In Findings of the Association for Computational Linguistics: EMNLP 2020, pages 1691–1703, 2020.