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Learning Objectives

Concepts

• Hierarchical patterns in language
• Probabilitic extensions of grammars
• Use of context-free grammars in NLP

Methods

• Conversion of context-free grammars into Chomsky Normal Form
• Syntact parsing of sentences with the extended CKY algorithm
• Extensions and variations of syntactic parsing

Covered tasks

• Constituency parsing
• Dependency parsing
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Outline of the Course
I. Overview

II. Basics of Linguistics

III. NLP using Rules

IV. NLP using Lexicons

V. Basics of Empirical Methods

VI. NLP using Regular Expressions

VII. NLP using Context-Free Grammars

• Introduction
• Probabilistic Context-Free Grammars
• Constituency Parsing
• Dependency Parsing

VIII. NLP using Language Models

IX. Practical Issues
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Introduction



Grammar

Formal grammars (recap)

• A grammar is a description of the valid structures of a language.
• A formal grammar specifies a set of rules consisting of terminal and

non-terminal symbols.

Grammar (⌃, N, S,R)

⌃ An alphabet, i.e., a finite set of terminal symbols, ⌃ = {v1, v2, . . .}

N A finite set of non-terminal symbols, N = {W1,W2, . . .}

S A start non-terminal symbol, S 2 N

R A finite set of production rules, R ✓ (⌃ [N)+ \ ⌃⇤ ⇥ (⌃ [N)⇤

Context-free grammar (CFG)

• A grammar (⌃, N, S,R) is context-free if all rules in R are of the form
U ! V with U 2 N and V 2 (N [ ⌃)⇤.

• A language is context-free, if there is a CFG that defines it.
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NLP using Context-Free Grammars

Use of CFGs in NLP

• CFGs tend to be effective for hierarchical structures of language.
• Probabilistic extensions (PCFGs) capture the likeliness of structures.
• CFGs usually define the basis of syntactic parsing.

Syntactic parsing (aka full parsing)

• The text analysis that determines the
syntactic structure of a sentence

• Used in NLP as preprocessing for many
tasks, e.g., relation extraction

fish people fish tanks
N N V N

NP

NP

VP

S

Constituencies vs. dependencies

• Constituency parsing. Infers the structure of the phrases in a sentence
• Dependency parsing. Infers the structure of the words’ dependencies

Introduction to NLP VII CFGs © Wachsmuth 2023 6



NLP using Context-Free Grammars
Phrase vs. Dependency Structure (Recap)

Phrase structure grammar

• Models the constituents of a sentence
and how they are composed of other
constituents and words

• Constituency (parse) tree. Inner nodes
are non-terminals, leafs are terminals

S

We try to understand the difference.

VP

VP

IN

VP

NP

PRP VBP VB DT NN

NP

VP

VP

Dependency grammar

• Models the dependencies between the
words in a sentence

• Dependency (parse) tree. All nodes
are terminals, the root is nearly always
the main verb (of the first main clause).

try

understand

difference
IN

PRP

VBP VB

DT

NN
to

We

the

.

.
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NLP using Context-Free Grammars
Attachment Ambiguity

Example “I saw a man with a telescope”
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I  saw    a   man  with  a  telescope
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DT
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I  saw    a   man  with  a  telescope
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Probabilistic Context-Free Grammars



Context-Free Grammars

Context-free gammars (CFGs) in NLP

• CFGs are particularly used to model the phrase structure of sentences.
• A phrase structure grammar is just a CFG with a specific interpretation.

We will mostly simply speak of CFGs here.

• For NLP, CFGs are extended by probabilities, as we will see below.

Phrase structure interpretation of non-terminals N = Nphr [Npos

Nphr Phrase types. A finite set of structural non-terminal symbols
Npos Part-of-speech tags. A finite set of lexical “pre-terminal” symbols

Nphr \Npos = ;.

Phrase structure interpretation of rules R = Rphr [Rpos

Rphr A finite set of structure rules of the form U ! V with U 2 Nphr and
V 2 (Nphr [Npos)⇤

Rpos A finite set of lexicon rules of the form U ! v with U 2 Npos and v 2 ⌃

In addition to S, CFGs in NLP usually include an extra symbol ROOT.
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Context-Free Grammars
Example

Example CFG, represented by its rules

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s2 VP! V NP l2 N! fish
s3 VP! V NP PP l3 N! tanks
s4 NP! NP NP l4 N! rods
s5 NP! NP PP // binary l5 V! people
s6 NP! N // unary l6 V! fish
s7 NP! " // empty l7 V! tanks
s8 PP! P NP l8 P! with

Example sentences created by the grammar

“people fish tanks” “people fish with rods”
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Context-Free Grammars
Chomsky Normal Form

Chomsky Normal Form (CNF)

• A CFG is in Chomsky Normal Form if all rules in R are of the forms
U ! VW and U ! v, where U, V,W 2 N and v 2 ⌃⇤.

Tansformation into normal form

• Cleaning. Empties and unaries are removed recursively.
• Binarization. n-ary rules are divided by using new non-terminals, n > 2.

• Any CFG can be transformed into CNF without changing the language.
• This may result in different parse trees for words the language.

Why transforming?

• Restricting a CFG in such a way is key to efficient parsing.
• Binarization is crucial for cubic time.
• Cleaning is not mandatory, but makes parsing quicker and cleaner.

More on this further below.
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Chomsky Normal Form
Pseudocode

Signature

• Input. The production rules R of a CFG
• Output. The production rules R⇤ of the normalized version of the CFG

toChomskyNormalForm(Production rules R)
1. while an empty (U ! ") 2 R do
2. R  R \ {U ! "}

3. for each rule (V ! V1 . . . Vk U W1 . . .Wl) 2 R do // k, l � 0

4. R  R [ {V ! V1 . . . Vk W1 . . .Wl}

5. while a unary (U ! V ) 2 R do
6. R  R \ {U ! V }

7. if U 6= V then
8. for each (V ! V1 . . . Vk) 2 R do R  R [ {U ! V1 . . . Vk}

9. if not (W ! V1 . . . Vk V W1 . . .Wl) 2 R then
10. for each (V ! V1 . . . Vk) 2 R do R  R \ {V ! V1 . . . Vk}

11. while an n-ary (U ! V1 . . . Vn) 2 R do // n � 3

12. R  (R \ {U ! V1 . . . Vn}) [ {U ! V1 U_V1, U_V1 ! V2 . . . Vn}

13. return R
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Chomsky Normal Form
Example: Empties (Removal)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s2 VP! V NP l2 N! fish
s3 VP! V NP PP l3 N! tanks
s4 NP! NP NP l4 N! rods
s5 NP! NP PP l5 V! people
s6 NP! N l6 V! fish
s7 NP! " l7 V! tanks
s8 PP! P NP l8 P! with

Removal of empties

• Add new rules for each rule where NP occurs on the right side.
Pseudocode lines 2–4.
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Chomsky Normal Form
Example: Empties (Addition)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s1’ S! VP l2 N! fish
s2 VP! V NP l3 N! tanks
s2’ VP! V l4 N! rods
s3 VP! V NP PP l5 V! people
s3’ VP! V PP l6 V! fish
s4 NP! NP NP l7 V! tanks
s4’ NP! NP l8 P! with
s5 NP! NP PP
s5’ NP! PP
s6 NP! N
s8 PP! P NP
s8’ PP! P
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Chomsky Normal Form
Example: Unaries (Removal)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s1’ S! VP l2 N! fish
s2 VP! V NP l3 N! tanks
s2’ VP! V l4 N! rods
s3 VP! V NP PP l5 V! people
s3’ VP! V PP l6 V! fish
s4 NP! NP NP l7 V! tanks
s4’ NP! NP l8 P! with
s5 NP! NP PP
s5’ NP! PP
s6 NP! N
s8 PP! P NP
s8’ PP! P
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Chomsky Normal Form
Example: Unaries (Addition)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s2 VP! V NP l2 N! fish
s2” S! V NP l3 N! tanks
s2’ VP! V l4 N! rods
s2”’ S! V l5 V! people
s3 VP! V NP PP l6 V! fish
s3” S! V NP PP l7 V! tanks
s3’ VP! V PP l8 P! with
s3”’ S! V PP
s4 NP! NP NP
s4’ NP! NP
s5 NP! NP PP
s5’ NP! PP
s6 NP! N
s8 PP! P NP
s8’ PP! P
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Chomsky Normal Form
Example: Unaries 2 (Removal)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s2 VP! V NP l2 N! fish
s2” S! V NP l3 N! tanks
s2’ VP! V l4 N! rods
s2”’ S! V l5 V! people
s3 VP! V NP PP l6 V! fish
s3” S! V NP PP l7 V! tanks
s3’ VP! V PP l8 P! with
s3”’ S! V PP
s4 NP! NP NP
s4’ NP! NP
s5 NP! NP PP
s5’ NP! PP
s6 NP! N
s8 PP! P NP
s8’ PP! P
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Chomsky Normal Form
Example: Unaries 2 (Addition)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s2 VP! V NP l2 N! fish
s2” S! V NP l3 N! tanks
s2”’ S! V l4 N! rods
s3 VP! V NP PP l5 V! people
s3” S! V NP PP l5’ VP! people
s3’ VP! V PP l6 V! fish
s3”’ S! V PP l6’ VP! fish
s4 NP! NP NP l7 V! tanks
s4’ NP! NP l7’ VP! tanks
s5 NP! NP PP l8 P! with
s5’ NP! PP
s6 NP! N
s8 PP! P NP
s8’ PP! P
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Chomsky Normal Form
Example: Unaries 3 (Removal)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s2 VP! V NP l2 N! fish
s2” S! V NP l3 N! tanks
s2”’ S! V l4 N! rods
s3 VP! V NP PP l5 V! people
s3” S! V NP PP l5’ VP! people
s3’ VP! V PP l6 V! fish
s3”’ S! V PP l6’ VP! fish
s4 NP! NP NP l7 V! tanks
s4’ NP! NP l7’ VP! tanks
s5 NP! NP PP l8 P! with
s5’ NP! PP
s6 NP! N
s8 PP! P NP
s8’ PP! P
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Chomsky Normal Form
Example: Unaries 3 (Addition)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s2 VP! V NP l2 N! fish
s2” S! V NP l3 N! tanks
s3 VP! V NP PP l4 N! rods
s3” S! V NP PP l5 V! people
s3’ VP! V PP l5’ VP! people
s3”’ S! V PP l5” S! people
s4 NP! NP NP l6 V! fish
s4’ NP! NP l6’ VP! fish
s5 NP! NP PP l6” S! fish
s5’ NP! PP l7 V! tanks
s6 NP! N l7’ VP! tanks
s8 PP! P NP l7” S! tanks
s8’ PP! P l8 P! with
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Chomsky Normal Form
Example: Unaries 4–7 (Removal)

Structural rules Lexical rules
s1 S! NP VP l1 N! people
s2 VP! V NP l2 N! fish
s2” S! V NP l3 N! tanks
s3 VP! V NP PP l4 N! rods
s3” S! V NP PP l5 V! people
s3’ VP! V PP l5’ VP! people
s3”’ S! V PP l5” S! people
s4 NP! NP NP l6 V! fish
s4’ NP! NP l6’ VP! fish
s5 NP! NP PP l6” S! fish
s5’ NP! PP l7 V! tanks
s6 NP! N l7’ VP! tanks
s8 PP! P NP l7” S! tanks
s8’ PP! P l8 P! with
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Chomsky Normal Form
Example: Unaries 4–7 (Addition)

Structural rules Lexical rules
s1 S! NP VP l1 NP! people
s2 VP! V NP l2 NP! fish
s2” S! V NP l3 NP! tanks
s3 VP! V NP PP l4 NP! rods
s3” S! V NP PP l5 V! people
s3’ VP! V PP l5’ VP! people
s3”’ S! V PP l5” S! people
s4 NP! NP NP l6 V! fish
s5 NP! NP PP l6’ VP! fish
s5” NP! P NP l6” S! fish
s8 PP! P NP l7 V! tanks

l7’ VP! tanks
l7” S! tanks
l8 P! with
l8’ PP! with
l8” NP! with
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Chomsky Normal Form
Example: n-aries 1–2 (Removal)

Structural rules Lexical rules
s1 S! NP VP l1 NP! people
s2 VP! V NP l2 NP! fish
s2” S! V NP l3 NP! tanks
s3 VP! V NP PP l4 NP! rods
s3” S! V NP PP l5 V! people
s3’ VP! V PP l5’ VP! people
s3”’ S! V PP l5” S! people
s4 NP! NP NP l6 V! fish
s5 NP! NP PP l6’ VP! fish
s5” NP! P NP l6” S! fish
s8 PP! P NP l7 V! tanks

l7’ VP! tanks
l7” S! tanks
l8 P! with
l8’ PP! with
l8” NP! with

Introduction to NLP VII CFGs © Wachsmuth 2023 24



Chomsky Normal Form
Example: n-aries 1–2 (Addition)! Results in Chomsky normal form!

Structural rules Lexical rules
s1 S! NP VP l1 NP! people
s2 VP! V NP l2 NP! fish
s2” S! V NP l3 NP! tanks
s3”” VP! V VP_V l4 NP! rods
s3””’ VP_V! NP PP l5 V! people
s3””” S! V S_V l5’ VP! people
s3”””’ S_V! NP PP l5” S! people
s3’ VP! V PP l6 V! fish
s3”’ S! V PP l6’ VP! fish
s4 NP! NP NP l6” S! fish
s5 NP! NP PP l7 V! tanks
s5” NP! P NP l7’ VP! tanks
s8 PP! P NP l7” S! tanks

l8 P! with
l8’ PP! with
l8” NP! with
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Probabilistic Context-Free Grammars

Probabilistic context-free grammar (PCFG)

• A CFG where each production rule is assigned a probablility

PCFG (⌃, N, S,R, P )

P A probability function R! [0, 1] from production rules to probabilities,
such that

8U 2 N :
X

(U!V )2R

P (U ! V ) = 1

(⌃, N, S, R as before)

Probabilities

• Trees. The probability P (t) of a tree t is the product of the probabilities
of the rules used to generate it.

• Strings. The probability P (s) of a string s is the sum of the probabilities
of the trees which yield s.
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Probabilistic Context-Free Grammars
Example

Example PCFG

Structural rules Lexical rules
s1 S! NP VP 1.0 l1 N! people 0.5
s2 VP! V NP 0.6 l2 N! fish 0.2
s3 VP! V NP PP 0.4 l3 N! tanks 0.2
s4 NP! NP NP 0.1 l4 N! rods 0.1
s5 NP! NP PP 0.2 l5 V! people 0.1
s6 NP! N 0.7 l6 V! fish 0.6
s7 PP! P NP 1.0 l7 V! tanks 0.3

l8 P! with 1.0

Notice

• For parsing, a PCFG should be transformed to Chomsky Normal Form
or at least binarized.

• The origin of the probabilities is clarified below.
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Probabilistic Context-Free Grammars
Example Probabilities

s = “people fish tanks with rods”

S 1.0

people  fish  tanks  with  rods

VP 0.4

PP 1.0

NP 0.7

NP 0.7

NP 0.7

N 0.5 V 0.6 N 0.2 P 1.0 N 0.1

t1

S 1.0

people  fish  tanks  with  rods

VP 0.6

PP 1.0NP 0.7

NP 0.7

NP 0.2

N 0.5 V 0.6 N 0.2 P 1.0 N 0.1

t2

NP 0.7

Probabilities

P (t1) = 1.0 · 0.7 · 0.4 · 0.5 · 0.6 · 0.7 · 1.0 · 0.2 · 1.0 · 0.7 · 0.1 = 0.0008232

P (t2) = 1.0 · 0.7 · 0.6 · 0.5 · 0.6 · 0.2 · 0.7 · 1.0 · 0.2 · 1.0 · 0.7 · 0.1 = 0.00024696

P (s) = P (t1) + P (t2) = 0.0008232 + 0.00024696 = 0.00107016
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Constituency Parsing

Constituency parsing

• The text analysis that determines the phrase structure of a sentence
with respect to a given grammar

• Often used in NLP as preprocessing where syntax is important

• Parsing works robust across domains of well-formatted texts.

Downstream tasks based on parsing

• Named entity recognition in complex domains (e.g., biology)

• Relationship extraction, both for semantic and temporal relations

• Coreference resolution, to identify candidate matching references

• Opinion mining regarding aspects of products or similar

• Machine translation, to analyze the source sentence

• Question answering, particularly in high-precision scenarios
... and so forth
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Constituency Parsing
Classical Parsing (before ⇠ 1990)

Classical parsing

• Hand-crafted CFG, along with a lexicon
• Usage of CFG-based systems to prove parses from words
• This scales badly and fails to give high language coverage.

Example “Fed raises interest rates 0.5% in effort to control inflation”

• Minimal grammar. 36 possibly parse trees
• Real-size broad-coverage grammar. Millions of parse trees
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Constituency Parsing
Classical Parsing: Problems and Solutions

Grammars with categorical constraints

• Limitation of the chance for unlikely parse trees of sentences
• But constraints reduce the coverage of a grammar.
• In classical parsing, typically ⇠30% of all sentences cannot be parsed.

Less constrained grammars

• Can parse more sentences
• But simple sentences end up with even more parse trees.
• No way to choose between different parse trees

Solution: Statistical parsing

• Very loose grammars that admit millions of parse trees for sentences
• Mechanisms that find the most likely parse tree of a sentence quickly
• Nowadays, most parsers are based on statistics (probabilities).
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Constituency Parsing
Statistical Parsing

How to build a statistical parser?

• Statistical parsers are based on PCFGs (or varations thereof).
• The rules and probabilities of the PCFGs are derived from treebanks.

Treebanks

• A treebank is corpus with tree-structured annotations
One of the most used treebanks is the Penn Treebank, PTB (Marcus et al., 1993).

• Building a treebank is an expensive manual process done by experts.
• Slower than building a grammar, but the benefits outweigh the costs

Benefits of treebanks

• Statistics. Frequencies and distributional information
• Development. Reusable for many parsers, POS taggers, etc.
• Evaluation. Basis for evaluating a developed system
• Language. Valuable resource for linguistics in general
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Constituency Parsing
Example PTB Sentence Representation

( (S
(NP-SBJ (DT The) (NN move))
(VP (VBD followed)

(NP
(NP (DT a) (NN round))
(PP (IN of)

(NP
(NP (JJ similar) (NNS increases))
(PP (IN by)

(NP (JJ other) (NNS lenders)))
(PP (IN against)

(NP (NNP Arizona) (JJ real) (NN estate) (NNS loans))))))
(, ,)
(S-ADV

(NP-SBJ (-NONE- *))
(VP (VBG reflecting)

(NP
(NP (DT a) (VBG continuing) (NN decline))
(PP-LOC (IN in)

(NP (DT that) (NN market)))))))
(. .)))
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Constituency Parsing
From Treebank to Chomsky Normal Form

ε      Listen

P-SUBJ

-none- VB

Original
PTB Tree

VP

S-HLN

ROOT

ε      Listen

NP

-none- VB

VP

S

ROOT

No PTB
function tags

Listen
VB

VP

S

ROOT

No
empties

Listen

S

ROOT

No unaries
(high)

Listen
VB

ROOT

No unaries
(low)

Notice

• No unaries. Low preferred over high, since it keeps lexical information
• No empties. Enough for parsing and makes a reconstruction of the

original parse tree easier
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Constituency Parsing
Attachment Ambiguity

Key parsing problem

• Correct attachment of the various constituents in a sentence, such as
prepositional phrases, adverbial phrases, infinitives, ...

“The board approved its acquisition ! attaches to “approved”
by Royal Trustco Ltd. ! attaches to “its acquisition”
of Toronto ! attaches to “by Royal Trustco Ltd.”
for $27 a share ! attaches to “its acquisition”
at its monthly meeting.” ! attaches to “approved ... for $27 a share”

How to find the correct attachment?

• Potential attachments grow exponentially with number n of constituents
• The problem is AI complete.

“I saw a man with a telescope.”

• Words predict attachment well.

“Moscow sent more than 100,000 soldiers into Ukraine.”
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Constituency Parsing
Attachment Ambiguity in Statistical Parsing

Two problems to solve in statistical parsing

1. Choose the most likely parse (according to statistics).
2. Avoid to do repeated work (algorithmically).

cats scratch people with cats with claws
N V N P N P N

cats scratch people with cats with claws
N V N P N P N

cats scratch people with cats with claws
N V N P N P N

cats scratch people with cats with claws
N V N P N P N

cats scratch people with cats with claws
N V N P N P N

NP

VP

NP

NP

PPNP

PP

VP

S

NP

NP

PPNP

PP

NP NP

VP NP

PP

NP

PP

NP

PPNP

NP

NP

PPNP

NP NP

PP

NP

PP

NP

S

VP

VP

NP

NP

NP

VP

S

NP VP

VP

S

VP

VPNP

S

Introduction to NLP VII CFGs © Wachsmuth 2023 37



CKY Parsing

Cocke-Kasami-Younger (CKY) parsing (aka CYK parsing)

• A dynamic programming parsing algorithm based on PCFG in CNF
• Goal. Get the most likely constituency parse tree for a sentence.
• Asympotically strong: cubic time, quadratic space

With respect to the length of the sentence and the number of non-terminals

fish people fish tanks
1 2 3 4

fish people fish tanks

N N V N

NP

NP

VP

S
Parse
triangle

Most likely
parse tree

(1,1) (2,2) (3,3) (4,4)

(1,2) (2,3) (3,4)

(1,4)

(1,3) (2,4)
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CKY Parsing
Extension

Extended CKY Parsing

• A parser based on a binarized PCFG, introduced below
• Includes unaries without increasing asymptotic complexity

Makes the algorithm more complicated, but keeps the grammar smaller

• Empties are treated like unaries, after adding a cell row.

people fish tankspeople fish tanks

additional cells
for empties

(0,0) (2,2) (3,3)(1,1)

(0,1) (1,2) (2,3)

(0,2) (1,3)

(0,3)

(1,1) (2,2) (3,3)

(1,2) (2,3)

(1,3)

Binarization is needed for cubic time

• Without, CKY parsing does not work by concept. Why not?
Other parsers may not require a binarized grammar, but then do binarization implicitly.
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CKY Parsing
Pseudocode (1 out of 2)

Signature
• Input. A sentence (represented by a list of tokens), a binarized PCFG
• Output. The most likely parse tree of the sentence

extendedCKYParsing(List<Token> tokens,PCFG (⌃, N, S,R, P ))
1. double [][][] probs  new double[#tokens][#tokens][#N]
2. for int i  1 to #tokens do // Lexicon rules (and unaries)

3. for each U 2 N do
4. if (U!tokens[i]) 2 P then
5. probs[i][i][U]  P(U!tokens[i])
6. boolean added  ‘true’ // As of here: Handle unaries

7. while added = ‘true’ do
8. added  ‘false’
9. for each U,V 2 N do
10. if probs[i][i][V]>0 and (U ! V) 2 P then
11. double prob  P (U ! V) · probs[i][i][V]
12. if prob > probs[i][i][U] then
13. probs[i][i][U]  prob
14. added  ‘true’
15. // ... continued on next slide...
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CKY Parsing
Pseudocode (2 out of 2)

// ... lines 1-14 on previous slide...

15. for int length  2 to #tokens do // Structural rules

16. for int beg  1 to #tokens - length + 1 do
17. int end  beg + length - 1
18. for int split  beg to end-1 do
19. for int U,V,W 2 N do
20. int prob  probs[beg][split][V] ·

probs[split+1][end][W] · P (U ! V W)
21. if prob > probs[beg][end][U] then
22. probs[beg][end][U]  prob
23. boolean added  ‘true’ // As of here: Handle unaries

24. while added do
25. added  ‘false’
26. for U,V 2 N do
27. prob  P (U ! V) · probs[beg][end][V];
28. if prob > probs[beg][end][U] then
29. probs[beg][end][U]  prob
30. added  ‘true’
31. return buildTree(probs) // Reconstruct tree from triangle
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CKY Parsing
Example

A binarized PCFG

Structural rules
s1 S ! NP VP 0.9
s1’ S ! VP 0.1
s2 VP ! V NP 0.5
s2’ VP ! V 0.1
s3’ VP ! V VP_V 0.3
s3” VP ! V PP 0.1
s3”’ VP_V ! NP PP 1.0
s4 NP ! NP NP 0.1
s5 NP ! NP PP 0.2
s6 NP ! N 0.7
s7 PP ! P NP 1.0

people fish

NP
V
N

0.35
0.1
0.5

VP
NP
V
N

0.06
0.14
0.6
0.2

NP –> NP NP
  S –> NP VP
S –> VP    

VP –> V NP    0.007
= 0.1 • 0.14 • 0.5

0.0049
0.0189
0.0007

Filling cells

• Compute probabilities for each cell.
• Keep only highest for each left side.
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CKY Parsing
Run-time Complexity

Run-time of pseudocode part 1

• O(n) times for-loop in lines 1–14, n = # tokens
• O(|N |) times for-loop in lines 3–5
• O(|N |

2) times while-loop in lines 7–14

O(n · |N |
2)

for part 1 in total

Run-time of pseudocode part 2

• O(n) times for-loop in lines 15–30
• O(n) times for-loop in lines 16–30
• O(n) times for-loop in lines 18–22
• O(|N |

3) times for-loop in lines 19–22
• O(|N |

2) times while-loop in lines 24–30
• O(n2) for building the tree in line 31

O(n3
· |N |

3)

for part 2 in total

Overall run-time

• Extended CKY parsing has a run-time of O(n3
· |N |

3).
• Several optimizations possible, but asymptotic complexity remains
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CKY Parsing
Evaluation of Effectiveness

Gold standard brackets
S-(0:11), NP-(0:2),
VP-(2:9), VP-(3:9),
NP-(4:6), PP-(6:9),
NP-(7:9), NP-(9:10)

Sales executives were examining the figures with great care yesterday .

NP

NP

S

PP

0 1 2 3 4 5 6 7 8 9 10 11

NNS NNS VBD VBG DT NNS IN JJ NN NN .

NP

VP

VPNP

Candidate brackets
S-(0:11), NP-(0:2),
VP-(2:10), VP-(3:10),
NP-(4:6), PP-(6:10),
NP-(7:10)

Sales executives were examining the figures with great care yesterday .

NP

S

PP

0 1 2 3 4 5 6 7 8 9 10 11

NNS NNS VBD VBG DT NNS IN JJ NN NN .

NP

VP

VPNP
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CKY Parsing
Evaluation of Effectiveness

8 gold standard brackets
S-(0:11), NP-(0:2), VP-(2:9), VP-(3:9), NP-(4:6), PP-(6:9), NP-(7:9), NP-(9:10)

7 candidate brackets
S-(0:11), NP-(0:2), VP-(2:10), VP-(3:10), NP-(4:6), PP-(6:10), NP-(7:10)

Effectiveness in the example

• Labeled precision (LP). 0.429 = 3 / 7
• Labeled recall (LR). 0.375 = 3 / 8
• Labeled F1-score. 0.400 = 2 · LP · LR / (LP + LR)

• POS tagging accuracy. 1.000 = 11 / 11

Effectiveness of CKY in general (Charniak, 1997)

• Labeled F1 ⇠0.87 when trained and tested on Penn Treebank
• CKY is robust, i.e., it parses almost anything (but with low probabilities).
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Lexicalized Parsing

Limitations of standard PCFGs

• PCFGs assume that the plausibility of structures is independent of the
words used, i.e., each rule has a fixed probability.

P (V P ! V NP NP ) = 0.00151

• However, specific words may make certain rules particularly (un)likely.

Lexicalization of PCFGs (Collins, 1999)

• Condition the probability of a rule on
the head word of the given phrase.

P (V P ! V NP NP | “said”) = 0.00001
P (V P ! V NP NP | “gave”) = 0.01980

• Rationale. The head word represents
a phrase’s structure and meaning well.

S gave

NP Max

NP Linda

Max   gave   Linda   nothing
NNP VBD PRP PRP

NP nothing

VP gave

Lexicalized parsing

• Constituency parsing based on a lexicalized PCFG
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Lexicalized Parsing
“Unlexicalization” of PCFGs

Hypothesis

• Lexical selection between content words is not crucial for parsing.
• More important are grammatical features, such as verb form, presence

of a verb auxiliary, ...

Unlexicalized parsing (Klein and Manning, 2003)

• Rules are not systematically specified down to the level of lexical items.
• No semantic lexicalization for nouns, such as “NPstocks”
• Instead: Structural “lexicalization”, such as “NPS

CC”
Meaning: Parent node is “S” and noun phrase is coordinating.

• Keep functional lexicalization of closed-class words, such as “VB-have”

Learned unlexicalized parsing (Petrov and Knight, 2007)

• Learn extra information for a non-terminal based on training data.
• Parse based on unlexicalized PCFG.
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Constituency Parsing
Evaluation Results

Comparison of the different approaches

• All in exactly the same setting on the Penn Treebank

Approach Source Labeled F1

Extended CKY parsing Charniak (1997) 0.87
Lexicalized parsing Collins (1999) 0.89
Unlexicalized parsing Klein and Manning (2003) 0.86
Learned unlexicalized parsing Petrov and Klein (2007) 0.90
Combining parsers Fossum and Knight (2009) 0.92
Transformer-based span parsing Tian et al. (2020) 0.96

Notice

• Neural parsers nowadays outperform probabilistic parsers significantly.
• Still, many build on core ideas of CKY parsing, like Tian et al. (2020).

The details are beyond the scope of this course.
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Dependency Grammars

Dependency grammar

• A grammar that models the syntactic structure of a sentence by linking
its tokens with binary asymmetric relations

• Relations, called dependencies, define grammatical connections.
Subject, prepositional object, apposition, etc.

Graph representation

• Each node is a token.
• An edge connects a head

with a dependent node.
• The nodes and edges form

a fully connected tree with
a single head.
If available, the main verb of the
first main clause is the head.

submitted

were

Republican

nsubjpass

Senator

Bills

of

by

Brownback

Kansas

immigrationand

on

ports

prepaux  pass

prep

pobj

cc conj

nn appos

of

pobj
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Dependency Grammars
Dependency Grammars vs. Phrase Structure Grammars

Dependency vs. phrase structure

• CFGs do not have the notion of a head — officially.
• Modern statistical parsers usually include phrasal “head rules”.

For example, the head of an NP is a noun, number, adjective, ...

• Given head rules, constituencies can be converted to dependencies.
• Dependencies can be converted back to constituencies, but a word’s

dependents will be on the same level.

S walked

Sue walked into the store

VP walked

PP into

P

NP store

NP VBD DT NN

NP Sue

walked

intoSue

store

the

S

Sue walked into the store

VP PP

P

NP

NP VBD DT NN

NP
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Dependency Grammars
Identification of Dependencies

Selected features of dependencies

• Breaks. Dependencies rarely span intervening verbs or punctuation.
• Valency. Heads have usual numbers of dependents on each side.
• Affinities. Some dependencies are more plausible than others.

For example “issues! the” rather than “the! issues”.

Discussion of the outstanding issues was completed .

Example “Retail sales drop in April cools afternoon market trading.”

“sales” dependent of? ! “drop”
“April” dependent of? ! “in”
“afternoon” dependent of? ! “trading”
“trading” dependent of? ! “cools”
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Dependency Grammars
Parsing Methods

Dynamic programming (Eisner, 1996)

• Lexicalized PCFG parsing, similar to CKY would need O(n5) steps.
• When forcing parse structures with heads at the ends, O(n3) is possible.

Graph algorithms (McDonald et al., 2005)

• Build a maximum spanning tree for a sentence. Score dependencies
independently using machine learning.! O(n3).

• More accurate on long dependencies and dependencies near the root.

Transition-based parsing (Nivre et al., 2008)

• Shift from left to right over a sentence. Make greedy attachment
choices guided by a machine learning classifier.! O(n)

• More accurate on short dependencies and disambiguation of core
grammatical functions.
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Conclusion

NLP using context-free grammars (CFGs)

• CFGs model hierarchical structure.
• PCFGs extend CFGs by probabilities (via statistics).
• In NLP, PCFGs used for phrase structure of sentences fish people fish tanks

N N V N

NP

NP

VP

S

Syntactic parsing based on grammars

• PCFGs used for CKY constituency parsing
• Extensions include lexicalization and unlexicalization
• Dependency grammars for dependency parsing

people fish

NP
V
N

0.35
0.1
0.5

VP
NP
V
N

0.06
0.14
0.6
0.2

NP –> NP NP
  S –> NP VP
S –> VP    

VP –> V NP    0.007
= 0.1 • 0.14 • 0.5

0.0049
0.0189
0.007

Benefits and limitations

• Statistical grammars are a core technique of NLP.
• Creation of large-scale treebanks is very expensive.
• CFGs just model the ways syntax is constructed.
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