Introduction to Natural Language Processing

Part I: Overview

Henning Wachsmuth

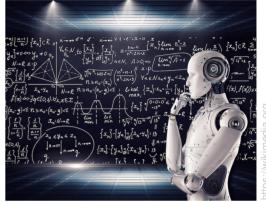
https://ai.uni-hannover.de

Introduction to NLP I Overview

© Wachsmuth 2025 1

Outline of the course

- I. Overview
 - Introduction
 - Applications
 - Challenges
 - Approaches
- II. Basics of Linguistics
- III. NLP using Rules
- IV. NLP using Lexicons
- V. Basics of Empirical Methods
- VI. NLP using Regular Expressions
- VII. NLP using Context-Free Grammars
- VIII. NLP using Language Models
 - IX. Practical Issues


Introduction

Natural language processing

 The study of computational methods for understanding and generating humanreadable text (or speech)

We mostly speak about text only in this course.

• The goal is to decode structured information from language, or to encode it in language.

• NLP is a subfield of AI, and one part of *computational linguistics*.

Linguistics

• The study of natural language(s) in terms of form, meaning, and context

Computational linguistics

- Roughly, the intersection of computer science and linguistics
- Models to explain linguistic phenomena, using knowledge or statistics
- Methods for tackling analysis and synthesis tasks from NLP

Analysis and Synthesis

Types of NLP tasks

- Analysis. The decoding of structured information from text
- Synthesis. The encoding of (structured) information into text Aka natural language understanding (NLU) and natural language generation (NLG)

Selected analysis tasks

- Token and sentence splitting
- Stemming and lemmatization
- Part-of-speech tagging
- Constituency/Dependency parsing
- Named/Numeric entity recognition
- Reference resolution
- Entity/Temporal relation extraction
- Topic/Sentiment/Spam classification
- Text scoring/grading

Selected synthesis tasks

- Lexicon creation
- Free text generation
- Sentence composition
- Discourse composition
- Spelling correction
- Summarization
- Text style transfer
- Cluster labeling

... among many other tasks

Example: Information Extraction

Task

- Identify entities, their attributes, and their relations in a given text
- Example. Extract company's founding dates from a news article

Time entity	Organizatio	on entity
" 2014 ad revenue	s of Google ar	e going to reach
Refere	ence	Time entity
\$20B. The search	h company <mark>wa</mark>	is founded in '98.
Reference Its IPO followed	Time entity in 2004.[]	Founded relation

Output: Founded("Google", 1998)

Possible approach

- 1. Lexical and syntactic preprocessing
- 2. Named and numeric entity recognition
- 3. Reference resolution
- 4. Entity relation extraction

Example: Language modeling

Task

- Extend a given text word by word until a suitable ending is reached.
- Example. Answer a user's question to a chatbot

н	In one short sentence: What is natural language processing?
S	Natural Language Processing (NLP) is a field of computer science and artificial intelligence that deals with the interaction between computers and humans through natural language.

Possible approach

- 1. Train general language model on huge amounts of text examples
- 2. Fine-tune model on question-answer training pairs

Introduction to NLP I Overview

Terminology

Terms in NLP

- Task. A specific problem with a defined input and desired output Examples: Constituency parsing, summarization, ...
- Technique. A general way of how to analyze and/or synthesize a text Examples: Probabilistic parsing, language model, ...
- Algorithm. A specific implementation of a technique Examples: CKY parsing, GPT-3, ...
- Model. The configuration of an algorithm resulting from training Examples: CKY parsing on Penn Treebank, GPT-3 fine-tuned on a set of Q&A pairs, ...
- Approach. A computational method using model(s) to tackle a task Example: A method that fines phrases based on CKY parsing, ...
- Method. May refer to an algorithm, model, and/or approach Examples: As above
- Application. A technology that tackles a real-world problem using NLP Example: Watson, ChatGPT, ...

Applications

Applications

Applications

- · Software that employs NLP to solve real-world problems
- This includes tools, systems, web services, and similar. The term *application* is also used in others ways in NLP.

Why applications?

- Automate human tasks and/or improve over human performance
- Use cases: Writing assistance, text analytics, conversational AI, etc.

Examples

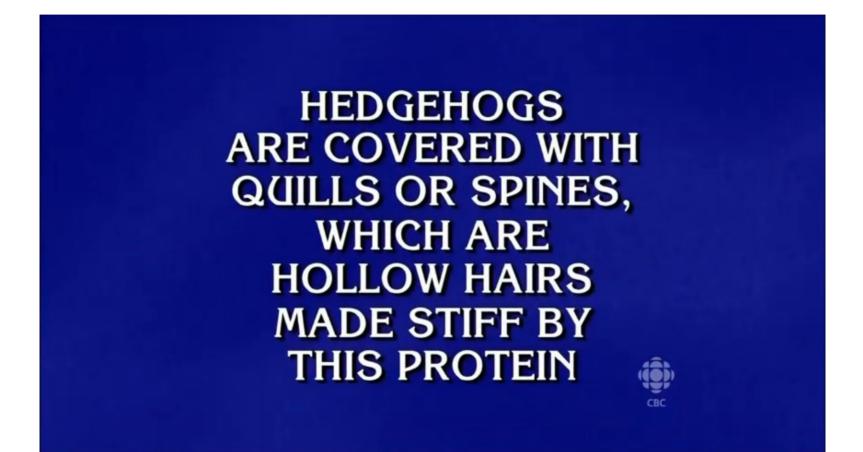
- Writing assistance. DeepL, Grammarly, Booking texts, ...
- Text analytics. IBM Watson, Facebook Ads & Targeting, Apple Mail, ...
- Conversational AI. ChatGPT, Google Gemini, Siri, Alexa, ...

Applications in this course

- The focus here is on computational methods rather than applications.
- Applications motivate why we deal with specific methods.

IBM Watson

- A technology for text analytics and decision support
- Originally: A focused question answering system
- First showcase was the "Jeopardy!" task

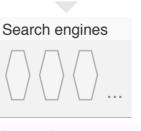


The IBM Challenge in 2011

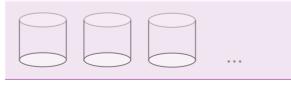
• Watson plays against the best Jeopardy! champions

https://www.youtube.com/watch?v=P18EdAKuC1U

Example "Question"


Watson's "Answer"

NLP in Watson


Question answering process (simplified)

	question text analysis	candidate determination	candidate scoring	answer text synthesis	
transcribed question	Segmentation Answer type classification Entity recognition Relation detection 	Content retrieval Entity recognition Relation detection Entity and relation matching	Evidence retrieval Answer type slot filling Entity scoring Relation scoring 	Result merging Confidence computation Answer ranking Text generation 	textual answer

Expert systems

Large data sources

Applications Evolution of NLP Applications

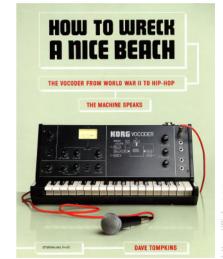
Selected milestones

- February 2011. Watson wins Jeopardy https://www.youtube.com/watch?v=P18EdAKuC1U
- October 2011. Siri starts on the iPhone https://www.youtube.com/watch?v=gUdVie_bRQo
- August 2014. Skype translates conversations in real time https://www.youtube.com/watch?v=RuAp92wW9bg
- May 2018. Google Duplex makes phone call appointments https://www.youtube.com/watch?v=pKVppdt_-B4
- February 2019. Project Debater competes in entire debates https://www.youtube.com/watch?v=nJXcFtY9cWY
- November 2022. ChatGPT leads conversations on any topic https://chat.openai.com

Observations

- NLP inside: All main analysis and synthesis tasks are tackled on text.
- None of these applications works perfectly.

Challenges


Challenges

Ambiguity

- Linguistic utterances allow for multiple interpretations.
- Fundamental challenge of processing natural language
- Pervasive across all language levels

Several types of ambiguity

- Phonetic. "wreck a nice beach"
- Word sense. "I went to the bank".
- · Part of speech. "I made her duck."
- Attachment. "I saw a man with a telescope."
- Coordination. "If you love money problems show up."
- Speech act. "Have you emptied the dishwasher?"
- Scope. "I never said she stole my money."

Challenges Limitations of Focus on Text

Purpose of "I never said she stole my money."

I never said she stole my money.

I never said she *stole* my money. I never said she stole *my* money. I never said she stole my *money*. Someone else said it, but I didn't. I simply didn't ever say it. I might have implied it in some way. But I never explicitly said it. I said someone took it. But I didn't say it was her. I just said she probably borrowed it. I said she stole someone else's money. I said she stole something of mine. But not my money.

Introduction to NLP I Overview

Colloquial language

- Non-standard writing. "@justinbieber Were SOO PROUD of what youve accomplished! U taught us 2 #neversaynever"
- Informal use. "This is sh*t" vs. "This is the sh*t"

Special phrases

- Tricky entities. "Let it Be was recorded", "mutation of the for gene", ...
- Idioms. "get cold feet", "lose face", ...
- Neologisms. "unfriend", "hangry", "whatsapping", ...

Tricky segmentation

- Hyphens. "the New York-New Haven Railroad"
- Punctuation. "She was a Dr. I was not."
- Whitespaces. "本を読む", "Just.Do.It."

Challenges Need for Context

World knowledge

- "Maja and Leandra are sisters." vs. "Maja and Leandra are mothers." Do Maja and Leandra belong to the same family?
- "I hope Trump will rethink capital punishment."

Stance on death penalty? What location is it about? Is death penalty legal there?

Domain dependency

• "Read the book!"

Positive sentiment in a book review. Positive in a movie review?

Language dependency

• "Bad"

Sentiment in English? In German (means "bath")? In French (does not exist)? In Japanese (not even the characters exist)? ...

Challenges

Practical Issues

Common practical issues

- NLP faces effectiveness, efficiency, and robustness issues in practice.
- How to deal with such issues will be discussed at the end of this course.

Effectiveness issues

- Effectiveness. The extent to which the output of a method is correct
- Methods may not be effective enough for use in real-life applications.

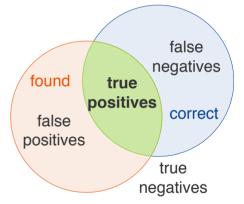
Efficiency issues

- Efficiency. Run-time, space, or energy consumption of a method
- Methods may not be efficient enough when applied to big text amounts.

Robustness issues

- Robustness. Effectiveness of a method across domains of text
- Methods may not be robust enough on data different from training data.

Approaches


Approaches

Need for data

- NLP methods are meant to tackle specific analysis or synthesis tasks.
- To this end, they operationalize expert rules and/or statistical patterns.
- Rules and patterns are derived from analyses of training data.

Need for evaluation

- The output of NLP methods is rarely free of errors due to the outlined challenges.
- Thus, they are evaluated empirically on test data.
- The *effectiveness* of the methods is quantified in terms of metrics, such as accuracy.

Need for comparison

- It is unclear how good a measured effectiveness in a given task is.
- Approaches are thus compared to other methods, so called *baselines*.

Introduction to NLP I Overview

Approaches

Text Corpora and Datasets

Text corpus

- A collection of real-world texts with known properties, compiled to study a language problem
- NLP methods are developed and tested on corpora.

Annotation

- An annotation marks a (span of) text that represents an instance of a particular type of information.
- Annotations represent meta-information about the marked parts.
- The texts in a corpus are often annotated for the problem to be studied.

Dataset

- A sub-corpus used for developing and/or evaluating methods
- Typical: a *training set*, a *validation set*, and a *test set*

Approaches

Inference Techniques

Knowledge-based inference

- Inference is based on manually-encoded expert knowledge.
- Knowledge is represented by rules, lexicons, grammars, and similar. We will see respective NLP techniques in the earlier part of this course.

Statistical inference

- Inference is based on statistical patterns found in training data.
- Patterns capture frequencies and/or manually-defined text features. We will see first respective NLP techniques in the later part of this course.

Neural inference

- Inference is based on statistical patterns found in training data.
- Patterns are automatically encoded in neural networks.

Respective NLP techniques are treated in our master courses.

Approaches Inference Processes

Pipeline approach

- An inference process is often realized in the form of a pipeline.
- A pipeline sequentially applies a set of NLP algorithms to a given text.

input Sentence Part-of-spech Phrase Tokenization splitting text tagging chunking Time entity Named entity Reference Founded relafounded relations recognition recognition resolution tion detection

Example: Pipeline for founding date extraction

Alternatives

- Joint approach. Tackle multiple analysis/synthesis tasks simultaneously
- Neural approach. Operates on the raw input text (or tokens)

Even with these, some kind of pipeline is used for most inference processes.

Approaches

Development and Evaluation

Input

- Task. An NLP task to be tackled
- Text corpus. A corpus, split into development and evaluation datasets

Typical development process

- 1. Analyze on training set how to best tackle the task.
- 2. Develop approach that tackles the task.
- 3. Evaluate effectiveness of the approach on the validation set.
- 4. Repeat steps 1–3 until effectiveness cannot be improved anymore.
- 5. Evaluate effectiveness of the final approach on the test set.

Output

- Approach. An NLP approach that tackles the given task
- Results. Empirical results on the effectiveness of the approach

Conclusion

Conclusion

Natural language processing

- Computational text understanding and generation
- Analyses and syntheses at several language levels
- Disruptive applications such as conversational AI

Challenges

- Natural language is ambiguous in several ways
- Understanding needs context and world knowledge
- NLP aims to be effective, efficient, and robust

This course

- Teaches how to develop basic NLP methods
- Covers several tasks and techniques
- · Covers design, implementation, and evaluation

😿 👿 🕿 😤 🛣	
7.0% 6.4% 6.0% 6.0% 5.8%	20
"This is the shit"	at a
	C
😌 😎 🌔 📢 🎧	

References

Some content and examples taken from

- Bender (2018). Emily M. Bender. 100 Things You Always Wanted to Know about Semantics & Pragmatics But Were Afraid to Ask. Tutorial at the 56th Annual Meeting of the Association for Computational Linguistics, ACL 2018. http://faculty. washington.edu/ebender/papers/Bender-ACL2018-tutorial.pdf.
- Jurafsky and Martin (2016). Daniel Jurafsky and Christopher D. Manning. Natural Language Processing. Lecture slides from the Stanford Coursera course, 2016. https://web.stanford.edu/~jurafsky/NLPCourseraSlides.html.
- Felbo et al. (2017). Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rahwan, and Sune Lehmann. Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1615–1625, 2017.
- Hagen (2018). Matthias Hagen (2018). Natural Language Processing. Slides from the lecture at Martin-Luther-Universität Halle-Wittenberg. https://studip.uni-halle.de/dispatch.php/course/details/index/8b17eba74d69784964cdefc154bb8b95.
- Wachsmuth (2015). Henning Wachsmuth: Text Analysis Pipelines Towards Ad-hoc Large-scale Text Mining. LNCS 9383, Springer, 2015.