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Learning Objectives

Concepts

• Multi-head self-attention
• Building blocks of transformers
• Contextual embeddings
• Masked language modeling

Methods

• Left-to-right transformers for text generation
• Bidirectional transformers for text classification and sequence labeling
• Encoder-decoder transformers for sequence-to-sequence generation

Tasks

• Language modeling
• Text summarization
• Sentiment analysis
• Part-of-speech tagging
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Outline of the Course
I. Overview

II. Basics of Data Science

III. Basics of Natural Language Processing

IV. Representation Learning

V. NLP using Clustering

VI. NLP using Classification and Regression

VII. NLP using Sequence Labeling

VIII. NLP using Neural Networks

IX. NLP using Transformers
• Introduction
• Left-to-Right Transformers
• Bidirectional Transformers
• Encoder-Decoder Transformers
• Conclusion

X. Practical Issues
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Introduction



Transformers

Limitations of long-short term memories (LSTMs)

• LSTMs may still struggle with modeling long-term dependencies, since
their memory is limited by the size of the hidden layer.

• Moreover, their sequential nature leaves few room for parallelization.

Idea of transformers

• A technique for sequence processing without recurrent connections
• Self-attention models relations of words over long distances

by using information from arbitrarily large contexts.

Transformer neural network

• A block-wise architecture of multilayer networks
that combines self-attention layers with other
network architecture concepts

• Input. A sequence of embeddings (x1, . . . ,xn)

• Output. A sequence of embeddings (y1, . . . ,yk)
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Transformers
Basic Concepts

Transformer architectures

• Different transformers are used for encoding and/or decoding text:
• Left-to-right. Mimics sequential text processing, usually for decoding
• Bidirectional. Allows processing a full text at a time, only for encoding
• Encoder-decoder. Combines both architectures

Transfer learning

• Transformers acquire knowledge from unsupervised tasks and apply it
to more easily solve other (supervised) tasks

• Pretraining. Learn a general transformer model from huge data
• Fine-tuning. Adjust the model to perform some downstream task

Contextual embeddings

• Transformers embed a word w based on the context of the given text.
• Different contexts lead to different embeddings of w.
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Transformers
Transformers in NLP

Transformers for generation tasks

• The architecture is designed for text generation.

• A left-to-right or encoder-decoder transformer is
pretrained to work as a language model.

• Task-specific outputs are modeled as input endings.

• Examples. Language modeling, text summarization

We spent one night at 
that hotel. Staff at the 
front desk was very 
nice, the room was 
clean and cozy, and the 
hotel lies in the city 
center... but all this 
never justifies the price, 
which is outrageous!

Nice and central hotel 
but outrageous price

Transformers for analysis tasks

• Transformers can also be used for text classification,
sequence labeling, and similar tasks.

• A pretrained encoder is combined with an FNN, a CRF,
or similar, and then fine-tuned on the task.

• This may drastically reduce the need for labeled data.

• Examples. Sentiment analysis, part-of-speech tagging

We spent one night at 
that hotel. Staff at the 
front desk was very 
nice, the room was 
clean and cozy, and the 
hotel lies in the city 
center... but all this 
never justifies the price, 
which is outrageous!

negative
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Transformers
Application of Transformers

Impact of transformers

• The transformer architecture is state of the art in nearly all NLP tasks.
• It does not “solve” the tasks, but often increases performance strongly.
• Any notable large language model (LLM) relies on transformers.

Large not fully defined, but usually billions of parameters

Selected LLMs

• Left-to-right. GPT-1, GPT-2, GPT-3, ...
• Bidrectional. BERT, XLNet, RoBERTA, ...
• Encoder-decoder. BART, T5, ...
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Example: ChatGPT https://chat.openai.com

• A dialogue system based on GPT-3.5/-4 that answers reasonably (and
often impressively) to nearly any human-written input

• Its LLM was trained to follow instructions, aligned with human values.
• Be aware that it still has clear limitations, e.g., in terms of factuality.
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Left-to-Right Transformers

Self-attention layer h(A)

• A specific type of hidden layer that maps a sequence X =(x1, . . . ,xn) to
a sequence Y =(y1, . . . ,yn)

• The idea is to model each xj based on the context of the other inputs.
• This allows learning which inputs are relevant to which others.

Left-to-right transformers

• When processing xj, h(A) has access
to all xk with k  j, but not with k > j.

• This enables the transformers to do
autoregressive generation. x1 x2 xn

y1 y2 yn

…

…

…
Self-

attention
layer

Computational efficiency

• The computation performed for xj is independent of those for other xk.
• Thus, training and inference of self-attention layers can be parallelized.
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Left-to-Right Transformers
Self-Attention Layers: Input Representation

Modeling relevance in context

• The core of (left-to-right) self-attention is to score the relevance of all
inputs xk, k  j, for a given input xj.

• The scores are used to weight the influence of xk for the output yj of xj.
• In the processing of X, each xj takes on three different roles.

Roles of inputs

• Query (qj). xj is in the focus; all xk with k  j are compared to it
• Key (kj). xj is compared to any focus xl, l � j

• Value (vj). xj is a value used to compute the output yl, l � j

Representation of roles

• To represent xj in each of its roles, weight matrices are learned:
For vectors of length m (say, m = 1024), a matrix is of size m⇥m.

qj := W(Q) · xj kj := W(K) · xj vj := W(V ) · xj
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Left-to-Right Transformers
Self-Attention Layers: Output Computation

Score computation

• The relevance of xk for a focus xj is modeled as a similarity.
• Similarity is computed as the dot product between key kk and query qj:

score(xj,xk) := qj � kk

Weight computation

• Each score may range from �1 to 1, the larger the more similar.
• For normalization, it is often scaled based on the length m of xk.
• The scores for xj are then mapped to a vector of j weights ↵ij:

81  k  j : ↵jk := softmax
⇣score(xj,xk)p

m

⌘

Output computation

• Finally, the output yj of xj is the weighted sum of the values vk:

yj :=
jX

k=1

↵jk · vk
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Left-to-Right Transformers
Self-Attention Layers: Efficiency

Illustration of computing y3

x1 x2 x3

q1 k1 v1 q2 k2 v2 q3 k3 v3

y3

α31 α32 α33

Role
representation

Softmax
layer

Weighted
sum y3

Computational efficiency

• Each output yj 2 Y can be computed in parallel.
• Still, each self-attention layer compares all input pairs (xj,xk), which is

quadratic in the length of X.
• This makes self-attention very expensive for longer inputs.
• Standard transformer libraries limit the input length (e.g., to 512 tokens).

How to deal with arbitrary lengths is an ongoing research topic.
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Transformer Architecture

Transformer block
• A transformer consists of d � 1 stacked layer blocks (e.g., d = 6).
• Block. A self-attention layer h(A), a feedforward layer h(F ), both

with layer norm f and residual connections

Feedforward layer
• h(F ) maps its input to an output of the length

of the block input xj, thus enabling stacking

x1 x2 xj

yj

…

Self-attention
layer

f

f

h(F)

h(A)

Feedworward
layer

Layer
norm

Layer
norm
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Layer norm
• f normalizes the output of a layer h in a way

that is optimal for gradient-based training.
• It rescales h using mean µ and standard deviation �, and adds weights:

f (h) := � · h� µ(h)

�(h)
+ �

Residual connection
• Passes information between two layers, skipping an intermediate layer:

z := f (x + h(A)) y := f (z + h(F ))
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Transformer Architecture
Multi-Head Self-Attention

Multi-head self-attention layer h(A)

• Words may relate to each other in various ways simultaneously.
• Transformers tackle this issue with multi-head self-attention layers: sets

of h � 1 self-attention layers at the same depth.

Head

• Each single self-attention layer
h(A)
l is called a head.

• Each h(A)
l has its own matrices

W(K)
l , W(Q)

l , and W(V )
l . x1 x2 xt…

h1
(A) h2

(A) hh
(A)…

yt

pLinear
projection

Heads (self-
att. layers)

Output computation

• The outputs of all heads are concatenated and reduced to the input
dimensionality using a linear projection p with weights W(P ):

h(A) := p(h(A)
1 , . . . ,h(A)

h ) = (h(A)
1 � . . .� h(A)

h ) ·W(P )
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Transformer Architecture
Positional Embeddings

Modeling word order

• The order of words is modeled
by combining each embedding xj

with a positional embedding x(P )
j :

xj + x(P )
j

• x(P )
j is specific to the position j

of xj in the sequence X.

… … … … …

… … … … …

… … … … …

…

CookTim in was Cupertino
21 43 5

Ways to embed positions

• Learning. Learn to embed j on data up to some maximum position;
fewer training examples exist for later positions, though

• Static function. Map positions to embeddings in a way that captures
their inherent relationship.
For example, positions 1 and 2 should be more similar than position 1 and 10.
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Left-to-Right Transformers in NLP

Contextual autoregressive generation

• Prime the generation process using
the entire prior context, along with
the output at each time step.

• This idea is the key to the power of
transformer language models.

Output
(Softmax)

Transformer
block 1

spentWe nightone at hotelthat

y1 y3y2

that </s>hotel

………… ………

Transformer
block 6

Linear
projection

………

Transformers as language models

• Left-to-right transformers are trained to predict the
next word using teacher forcing.

• This way, each instance can be processed in parallel.

Example: Text summarization

• Input. A long(er) text, such as an article or review
• Output. A short(er) text, summarizing the main points

We spent one night at 
that hotel. Staff at the 
front desk was very 
nice, the room was 
clean and cozy, and the 
hotel lies in the city 
center... but all this 
never justifies the price, 
which is outrageous!

Nice and central hotel 
but outrageous price
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Left-to-Right Transformers in NLP
Text Summarization

Training

• Input. Training pairs of text (w1, . . . , wn) and summary (w0
1, . . . , w

0
k)

• Append each pair with a separator tag: (w1, . . . , wn,[sep], w0
1, . . . , w

0
k)

• Use these sequences as language
modeling instances.

Output
(Softmax)

Transformer
block 1

…spent !outrageous [sep] andNice

y1 y3y2

Nice centraland

………… ………

Transformer
block 6

Linear
projection

………

…We

…

Summary

Input
Inference

• Prime the model with an input text, followed by the tag [sep].
• In each step, the model has access to the text and previous outputs.
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Bidirectional Transformers

Limitations of left-to-right transformers

• By concept, left-to-right transformers can model prior context only.
• This is suboptimal for tasks such as classification or sequence labeling.

Bidirectional transformer (encoder)

• A transformer that maps from n input embeddings X = (x1, . . . ,xn) to n

output embeddings Y = (y1, . . . ,yn).
• For any xj, each self-attention layer h(A)

can access the whole X.
• Each yj defines a representation of xj

contextualized by the sequence X. x1 x2 xn

y1 y2 yn

…

…

…
Self-

attention
layer

Usage for downstream tasks

• Bidirectional encoders can be pretrained self-supervised.
• For downstream tasks, extra layers are added and trained supervised.
• The encoder may be frozen or fine-tuned towards the task.
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Bidirectional Transformers
Contextualization

Self-attention layers

• Mostly, input representation and output computation of self-attention
are exactly as in left-to-right transformers.

• The key difference lies in the access to the whole input sequence X.
• Besides, most implementations rely on subword tokenization.

Subword tokenization

• Tokens are split into subwords that are used for all further processing.
• This avoids unknown/rare word problems and reduces vocabulary size.
• Subwords range from a single character to a whole word.
• For tasks that need words, subwords are merged again.

Different methods exist for both splitting and merging, but are outside the scope here.

Computational efficiency

• As before, each output yj 2 Y can be computed in parallel.
• Still, both time and memory grow quadratically with the length of X.
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Bidirectional Transformers
Self-Supervised Training

Transformers as task solvers

• Due to the free access to X, bidirectional transformers are not trained
to predict next words (i.e., as a language model).

• Instead, they learn to solve tasks that can be trained self-supervised.

Self-supervised learning

• Self supervision refers to idea of creating training data automatically.
• A common method is to corrupt an input text and let a model recover it.
• Corruptions. Masking, reordering, substitution, deletion, ...

Common training tasks

• Masked language modeling. Predict missing words in a text.
For tasks such as coreference resolution, longer spans may be useful.

• Next sentence prediction. Decide if two sentence follow each other.
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Bidirectional Transformers
Masked Language Modeling

Masked language modeling (aka the cloze task)

• Given a sequence of words where one or more are missing (masked),
predict each missing word w̃.

______ Cook is the ______ of Apple.

• For each w̃, the probability distribution over the vocabulary is learned.

Training process

• Sample tokens from training sequences for learning.

• Prepare each token in one of three ways:

1. Mask it with the unique tag [mask].
2. Replace it with some vocabulary token,

chosen based on token probabilities
3. Leave it unchanged

• Learn to predict the original tokens.

… … … … …

… … … … …

… … … … …

[mask]Tim in was working
21 43 5

CookTim in was Cupertino
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Bidirectional Transformers
Example: BERT (Devlin et al., 2019)

Bidirectional Encoder Representations from Transformers (BERT)

• First bidirectional transformer model, published by Google
• 12 blocks, each with 12 multi-head self-attention layers of size 768
• Subword vocabulary with 30,000 tokens

This all results in over 100M parameters (recent models are much larger)

Data basis of BERT

• Books Corpus. 0.8 billion words from book texts
• English Wikipedia. 2.5 billion words from articles

GPT-3 is trained 470x as many words.
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Training of BERT

• Masked language modeling. 15% of all tokens in training sequences for
learning: 80% masked, 10% replaced, 10% left

• Next sentence prediction. 50% of training pairs positive, 50% negative
About 40 epochs on both tasks simultaneously until model convergence
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Bidirectional Transformers
Contextual Embeddings

Result of training

• Embedding model. A mapping from (sub)words to their embeddings
• Bidirectional encoder. A network that predicts contextual embeddings

for any input sequence

Contextual(ized) embedding

• A vector representation vj of some aspect of the meaning of a word wj

in the context of a sequence (w1, . . . , wj, . . . , wn)

• As static embeddings, such embeddings can be used for any task.

”tim cook is a ceo” ! vcook = (0.43, 0.52, 0.21, 0.19, . . . , 0.33)
”tim is a cook” ! vcook = (0.55, 0.01, 0.88, 0.18, . . . , 0.33)

What output to use?

• Final. Use the yj from the last transformer block
• Mixed. Average, or concatenate, the yj from multiple blocks (e.g., last 4)
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Birectional Transformers in NLP

Text classification

• The unique tag[cls] is prepended to all sequences (w1, . . . , wn) as w0,
both during pretraining and encoding.

• For w0, x0 thereby represents the entire sequence X = (x1, . . . ,xn).
• The output y0 of the final block is then input to an added classifier head.

Classifier head: A feedforward layer/network that predicts the class label.

Sequence labeling

• Each final output yj is mapped to its label probabilities using Softmax.
• Greedy. Simply use the most likely tag as the prediction.
• CRF. Input the label probabilities to a conditional random field head.

CRF head: A normal CRF that can take global label transitions into account.

Training

• The added heads are trained supervised on training data.
• The training loss can also be used to fine-tune the pretrained encoder.

Often, updating only the last few transformer blocks works best in practice.
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Birectional Transformers in NLP
Sentiment Analysis

Example: Sentiment analysis

• Input. A text sequence (w1, . . . , wn) with prepended tag w0 = [cls]

• Output. The probability distribution over all sentiment polarities
Shown here: Polarity with highest probability

Output
(Softmax)

Bidrectional
transf. block 1

[cls] spentWe

y1

negative

………

Bidrectional
transf. block 6

Feedforward
layer(s)

………

…

Polarity

Input outrageous

…

…

…

……
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Birectional Transformers in NLP
Part-of-speech tagging

Example: Part-of-speech tagging

• Input. A text sequence (w1, . . . , wn)

• Output. The probability distribution over all tags for each word wj

Output
(Softmax)

Bidrectional
transf. block 1

We onespent

y1

PRP

………

Bidrectional
transf. block 6

Feedforward
layer(s)

………

…

POS Tag

Input outrageous

…

…

…

……

y2

VBD

y3

CD

yn

JJ

…

…

…
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Encoder-Decoder Transformers

Encoder-decoder transformer (Vaswani et al., 2017)

• A transformer that combines a bidrectional
encoder with a left-to-right decoder

• It maps an input sequence X = (x1, . . . ,xn)

to an output sequence Y = (y1, . . . ,yk).

Extended decoder blocks

• The encoder’s output is a representation
He = (h1, . . . ,hn) of X.

• Each decoder transformer block has an
extra cross-attention layer to attend to He. yj-2 yj-1

yj

…

Self-attention
layer

f

f

h(C)

h(A)

Cross-attention
layer

Layer
norm

Layer
norm

Ex
te

nd
ed

 d
ec

od
er

 b
lo

ck

f

h(F)Feedworward
layer

Layer
norm

output hj 
of encoder

Cross-attention (aka source attention)

• The query qj is the previous output yj�1 (or its earlier representation).
• The key kj and value vj come from the output hj of the encoder:

The rest is identical to standard multi-head self-attention.

qj := W(Q) · yj�1 kj := W(K) · hj vj := W(V ) · hj
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Encoder-Decoder Transformers
Architecture

Bidirectional encoder

• Input. X = (x1, . . . ,xn)

• d(I) transformer blocks
compute a contextual
representation

• Output. He = (h1, . . . ,hn)

Left-to-right decoder

• Input. He and y0 for a
unique start tag [sep]

• d(O) transformer blocks
create the output, primed
on He, autoregressively

• Output. Y =(y1, . . . ,yk)
…

…

Multi-head self-attention
Layer norm

Multi-head cross-attention
Layer norm

Feedforward layer
Layer norm

h1

…

…

…

…
h2 hn

…
…

…

…
y1 y2 yk

Multi-head self-attention
Layer norm

Feedforward layer
Layer norm

x1 x2 xn

Multi-head self-attention
Layer norm

Feedforward layer
Layer norm

Multi-head self-attention
Layer norm

Multi-head cross-attention
Layer norm

Feedforward layer
Layer norm

…

…

y0 y1 yk-1

……

Bidirectional Encoder Left-to-right Decoder
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Encoder-Decoder Transformers in NLP

Sequence-to-sequence generation

• Task. Given an input text D(I), write an output text D(O) of a certain kind
• For open-ended outputs, left-to-right transformers prove best so far
• As soon as D(O) must fulfill defined constraints, encoder-decoders tend

to be preferable

Selected sequence-to-sequence tasks

• Text summarization. As defined above
• Machine translation. Convert a text from one language to another
• Style transfer. Change the style of a text while preserving its content
• Debiasing. Rewrite a text into a version free of bias
• Conclusion generation. Infer an argument’s claim from its reasons

Wanna learn more?

• Enroll in my summer term course “Computational Argumentation”
• Write your thesis with the NLP Group ;)
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Conclusion

Transformer

• A neural architecture fully based on self-attention
• Training and inference easy to parallelize
• Transfer learning based on pretraining and fine-tuning

x1 x2 xn

y1 y2 yn

…

…

…
Self-

attention
layer

Types of transformers

• Left-to-right transformers for output decoding
• Bidirectional transformers for input encoding
• Encoder-decoder transformers for combinations

…

…

Multi-head self-attention
Layer norm

Multi-head cross-attention
Layer norm

Feedforward layer
Layer norm

h1

…

…

…

…
h2 hn

…
…

…

…
y1 y2 yk

Multi-head self-attention
Layer norm

Feedforward layer
Layer norm

x1 x2 xn

Multi-head self-attention
Layer norm

Feedforward layer
Layer norm

Multi-head self-attention
Layer norm

Multi-head cross-attention
Layer norm

Feedforward layer
Layer norm

…

…

y0 y1 yk-1

……

Bidirectional Encoder Left-to-right Decoder

Impact of transformers

• Transformers solve context modeling to a wide extent
• State of the art in basically any NLP task nowadays
• Tools such as ChatGPT stress the real-life potential

Output
(Softmax)

Bidrectional
transf. block 1

We onespent

y1

PRP

………

Bidrectional
transf. block 6

Feedforward
layer(s)

………

…

POS Tag

Input outrageous

…

…

…

……

y2

VBD

y3

CD

yn

JJ

…

…

…
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