Details zu Publikationen

Auto-PyTorch

Multi-Fidelity MetaLearning for Efficient and Robust AutoDL

verfasst von
Lucas Zimmer, Marius Lindauer, Frank Hutter
Abstract

While early AutoML frameworks focused on optimizing traditional ML pipelines and their hyperparameters, a recent trend in AutoML is to focus on neural architecture search. In this paper, we introduce Auto-PyTorch, which brings the best of these two worlds together by jointly and robustly optimizing the architecture of networks and the training hyperparameters to enable fully automated deep learning (AutoDL). Auto-PyTorch achieves state-of-the-art performance on several tabular benchmarks by combining multi-fidelity optimization with portfolio construction for warmstarting and ensembling of deep neural networks (DNNs) and common baselines for tabular data. To thoroughly study our assumptions on how to design such an AutoDL system, we additionally introduce a new benchmark on learning curves for DNNs, dubbed LCBench, and run extensive ablation studies of the full Auto-PyTorch on typical AutoML benchmarks, eventually showing that Auto-PyTorch performs better than several state-of-the-art competitors on average.

Organisationseinheit(en)
Fachgebiet Maschinelles Lernen
Institut für Informationsverarbeitung
Externe Organisation(en)
Albert-Ludwigs-Universität Freiburg
Bosch Center for Artificial Intelligence (BCAI)
Typ
Artikel
Journal
IEEE Transactions on Pattern Analysis and Machine Intelligence
Band
43
Seiten
3079-3090
Anzahl der Seiten
12
ISSN
0162-8828
Publikationsdatum
01.09.2021
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Software, Artificial intelligence, Angewandte Mathematik, Maschinelles Sehen und Mustererkennung, Theoretische Informatik und Mathematik
Elektronische Version(en)
https://arxiv.org/pdf/2006.13799 (Zugang: Offen)
https://doi.org/10.1109/TPAMI.2021.3067763 (Zugang: Geschlossen)