ForschungPublikationen
Publication Details

Details zu Publikationen

2024


Giovanelli, J., Tornede, A., Tornede, T., & Lindauer, M. (Angenommen/Im Druck). Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning. in Proceedings of the Thirty-Eighth Conference on Artificial Intelligence (AAAI'24)
Mohan, A., Zhang, A., & Lindauer, M. (Angenommen/Im Druck). Structure in Deep Reinforcement Learning: A Survey and Open Problems. Journal of Artificial Intelligence Research. https://arxiv.org/abs/2306.16021

2023


Alshomary, M., & Wachsmuth, H. (2023). Conclusion-based Counter-Argument Generation. in EACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference (S. 957-967). Association for Computational Linguistics (ACL). https://doi.org/10.48550/arXiv.2301.09911
Bäumer, F., Chen, W. F., Geierhos, M., Kersting, J., & Wachsmuth, H. (2023). Dialogue-Based Requirement Compensation and Style-Adjusted Data-To-Text Generation. in On-The-Fly Computing : Individualized IT-Services in dynamic markets (S. 65-84) https://doi.org/10.5281/zenodo.8068456
Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (Angenommen/Im Druck). Contextualize Me – The Case for Context in Reinforcement Learning. Transactions on Machine Learning Research. https://doi.org/10.48550/arXiv.2202.04500
Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2023). Extended Abstract: Contextualize Me -- The Case for Context in Reinforcement Learning. in The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=DJgHzXv61b
Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., & Lindauer, M. (Angenommen/Im Druck). Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. in AutoML Conference 2023 PMLR.
Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., & Lindauer, M. (Angenommen/Im Druck). Towards Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. in GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference Companion Association for Computing Machinery Special Interest Group on Genetic and Evolutionary Computation (SIGEVO).
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A-L., Deng, D., & Lindauer, M. (2023). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), [e1484]. https://doi.org/10.1002/widm.1484
Denkena, B., Dittrich, M-A., Noske, H., Lange, D., Benjamins, C., & Lindauer, M. (2023). Application of machine learning for fleet-based condition monitoring of ball screw drives in machine tools. The international journal of advanced manufacturing technology, 127(3-4), 1143-1164. https://doi.org/10.1007/s00170-023-11524-9
Eimer, T., Lindauer, M., & Raileanu, R. (2023). Extended Abstract: Hyperparameters in Reinforcement Learning and How To Tune Them. in The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=N3IDYxLxgtW
Eimer, T., Lindauer, M., & Raileanu, R. (2023). Hyperparameters in Reinforcement Learning and How to Tune Them. in ICML'23: Proceedings of the 40th International Conference on Machine Learning (S. 9104–9149). [366] https://doi.org/10.48550/arXiv.2306.01324, https://doi.org/10.5555/3618408.3618774
Faggioli, G., Clarke, C. L. A., Demartini, G., Hagen, M., Hauff, C., Kando, N., Kanoulas, E., Potthast, M., Stein, B., Wachsmuth, H., & Dietz, L. (2023). Perspectives on Large Language Models for Relevance Judgment. in ICTIR '23: Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval (S. 39-50). Association for Computing Machinery, Inc. https://doi.org/10.48550/arXiv.2304.09161, https://doi.org/10.1145/3578337.3605136
Haake, C-J., Auf Der Heide, F. M., Platzner, M., Wachsmuth, H., & Wehrheim, H. (2023). On-The-Fly Computing: Individualized IT-Services in dynamic markets. (Verlagsschriftenreihe des Heinz Nixdorf Instituts; Band 412). Verlagschriftenreihe des Heinz Nixdorf Instituts. https://doi.org/10.17619/UNIPB/1-1797
Kiesel, J., Alshomary, M., Mirzakhmedova, N., Heinrich, M., Handke, N., Wachsmuth, H., & Stein, B. (2023). SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments. in A. K. Ojha, A. S. Doğruöz, G. Da San Martino, H. T. Madabushi, R. Kumar, & E. Sartori (Hrsg.), Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023) (S. 2287-2303). Association for Computational Linguistics (ACL). https://doi.org/10.18653/V1/2023.SEMEVAL-1.313
Lapesa, G., Vecchi, E. M., Villata, S., & Wachsmuth, H. (2023). Mining, Assessing, and Improving Arguments in NLP and the Social Sciences. in Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2023.eacl-tutorials.1
Loni, M., Mohan, A., Asadi, M., & Lindauer, M. (Angenommen/Im Druck). Learning Activation Functions for Sparse Neural Networks. in Second International Conference on Automated Machine Learning PMLR. https://arxiv.org/abs/2305.10964
Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., & Hutter, F. (2023). PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning. in Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS) https://doi.org/10.48550/arXiv.2306.12370
Mohan, A., Zhang, A., & Lindauer, M. (Angenommen/Im Druck). A Patterns Framework for Incorporating Structure in Deep Reinforcement Learning. in The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=KkKWsPLlAx
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., & Lindauer, M. (Angenommen/Im Druck). AutoRL Hyperparameter Landscapes. in Second International Conference on Automated Machine Learning PMLR. https://doi.org/10.48550/arXiv.2304.02396
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., & Lindauer, M. (Angenommen/Im Druck). Extended Abstract: AutoRL Hyperparameter Landscapes. in The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=4Zu0l5lBgc
Neutatz, F., Lindauer, M., & Abedjan, Z. (2023). AutoML in Heavily Constrained Applications. VLDB Journal. https://doi.org/10.48550/arXiv.2306.16913, https://doi.org/10.1007/s00778-023-00820-1
Nouri, Z., Prakash, N., Gadiraju, U., & Wachsmuth, H. (2023). Supporting Requesters in Writing Clear Crowdsourcing Task Descriptions Through Computational Flaw Assessment. in IUI 2023 - Proceedings of the 28th International Conference on Intelligent User Interfaces (S. 737–749). Association for Computing Machinery (ACM). https://doi.org/10.1145/3581641.3584039
Ruhkopf, T., Mohan, A., Deng, D., Tornede, A., Hutter, F., & Lindauer, M. (2023). MASIF: Meta-learned Algorithm Selection using Implicit Fidelity Information. Transactions on Machine Learning Research. https://openreview.net/forum?id=5aYGXxByI6
Schubert, F., Benjamins, C., Döhler, S., Rosenhahn, B., & Lindauer, M. (2023). POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning. Transactions on Machine Learning Research. https://doi.org/10.48550/arXiv.2205.11357
Segel, S., Graf, H., Tornede, A., Bischl, B., & Lindauer, M. (Angenommen/Im Druck). Symbolic Explanations for Hyperparameter Optimization. in AutoML Conference 2023 PMLR. https://doi.org/10.5281/zenodo.8123425
Shoaib, M., Kotthoff, L., Lindauer, M., & Kant, S. (2023). AutoML: advanced tool for mining multivariate plant traits. Trends in Plant Science, 28(12), 1451-1452. https://doi.org/10.1016/j.tplants.2023.09.008
Skitalinskaya, G., Spliethöver, M., & Wachsmuth, H. (2023). Claim Optimization in Computational Argumentation. in C. M. Keet, H-Y. Lee, & S. Zarrieß (Hrsg.), Proceedings of the 16th International Natural Language Generation Conference (S. 134-152). Association for Computational Linguistics (ACL). https://doi.org/10.48550/arXiv.2212.08913, https://doi.org/10.18653/v1/2023.inlg-main.10
Skitalinskaya, G., & Wachsmuth, H. (2023). To Revise or Not to Revise: Learning to Detect Improvable Claims for Argumentative Writing Support. in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers) (S. 15799–15816). (Proceedings of the Annual Meeting of the Association for Computational Linguistics; Band 1). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2023.acl-long.880
Stahl, M., & Wachsmuth, H. (2023). Identifying Feedback Types to Augment Feedback Comment Generation. in Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges (S. 31-36) https://aclanthology.org/2023.inlg-genchal.5
Stahl, M., Düsterhus, N., Chen, M-H., & Wachsmuth, H. (2023). Mind the Gap: Automated Corpus Creation for Enthymeme Detection and Reconstruction in Learner Arguments. in Findings of the Association for Computational Linguistics: EMNLP 2023 (S. 4703-4717) https://doi.org/10.48550/arXiv.2310.18098, https://doi.org/10.18653/v1/2023.findings-emnlp.312
Syed, S., Ziegenbein, T., Heinisch, P., Wachsmuth, H., & Potthast, M. (2023). Frame-oriented Summarization of Argumentative Discussions. in Proceedings of the 24th Meeting of the Special Interest Group on Discourse and Dialogue (S. 114-129). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2023.sigdial-1.10
Theodorakopoulos, D., Manß, C., Stahl, F., & Lindauer, M. (2023). Green-AutoML for Plastic Litter Detection. in Proceedings of the ICLR Workshop on Tackling Climate Change with Machine Learning https://www.climatechange.ai/papers/iclr2023/53
Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H., & Lindauer, M. (2023). AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks. https://doi.org/10.48550/arXiv.2306.08107
Ziegenbein, T., Syed, S., Lange, F., Potthast, M., & Wachsmuth, H. (2023). Modeling Appropriate Language in Argumentation. in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (S. 4344-4363). (Proceedings of the Annual Meeting of the Association for Computational Linguistics; Band 1). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2023.acl-long.238
Zoeller, M., Mauthe, F., Zeiler, P., Lindauer, M., & Huber, M. (2023). Automated Machine Learning for Remaining Useful Life Predictions. in Proceedings of the international conference on Systems Science and Engineering, Human-Machine Systems, and Cybernetics (IEEE SMC) IEEE Xplore Digital Library. https://arxiv.org/abs/2306.12215
Zöller, M., Lindauer, M., & Huber, M. (2023). auto-sktime: Automated Time Series Forecasting. https://arxiv.org/abs/2312.08528

2022


Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer, T., Lindauer, M., & Hutter, F. (2022). Automated Dynamic Algorithm Configuration. Journal of Artificial Intelligence Research, 75, 1633-1699. https://doi.org/10.48550/arXiv.2205.13881, https://doi.org/10.1613/jair.1.13922
Alshomary, M., Rieskamp, J., & Wachsmuth, H. (2022). Generating Contrastive Snippets for Argument Search. in F. Toni, S. Polberg, R. Booth, M. Caminada, & H. Kido (Hrsg.), Computational Models of Argument: Proceedings of COMMA 2022 (S. 21-31). (Frontiers in Artificial Intelligence and Applications; Band 353). IOS Press. https://doi.org/10.3233/FAIA220138
Alshomary, M., El Baff, R., Gurcke, T., & Wachsmuth, H. (2022). The Moral Debater: A Study on the Computational Generation of Morally Framed Arguments. in S. Muresan, P. Nakov, & A. Villavicencio (Hrsg.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers (S. 8782 - 8797). (Proceedings of the Annual Meeting of the Association for Computational Linguistics; Band 1). Association for Computational Linguistics (ACL). https://doi.org/10.48550/arXiv.2203.14563, https://doi.org/10.18653/v1/2022.acl-long.601
Benjamins, C., Raponi, E., Jankovic, A., Blom, K. V. D., Santoni, M. L., Lindauer, M., & Doerr, C. (2022). PI is back! Switching Acquisition Functions in Bayesian Optimization. https://arxiv.org/abs/2211.01455
Benjamins, C., Jankovic, A., Raponi, E., Blom, K. V. D., Lindauer, M., & Doerr, C. (2022). Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis. Beitrag in Workshop on Meta-Learning (MetaLearn 2022). https://openreview.net/forum?id=cmxtTF_IHd
Bondarenko, A., Fröbe, M., Kiesel, J., Syed, S., Gurcke, T., Beloucif, M., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., & Hagen, M. (2022). Overview of Touché 2022: Argument Retrieval. CEUR Workshop Proceedings, 3180, 2867-2903. https://ceur-ws.org/Vol-3180/paper-247.pdf
Bondarenko, A., Fröbe, M., Kiesel, J., Syed, S., Gurcke, T., Beloucif, M., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., & Hagen, M. (2022). Overview of Touché 2022: Argument Retrieval: Argument Retrieval: Extended Abstract. in M. Hagen, S. Verberne, C. Macdonald, C. Seifert, K. Balog, K. Nørvåg, & V. Setty (Hrsg.), Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022, Proceedings (Part 2 Aufl., S. 339-346). (Lecture Notes in Computer Science; Band 13186). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-99739-7_43
Bothmann, L., Strickroth, S., Casalicchio, G., Rügamer, D., Lindauer, M., Scheipl, F., & Bischl, B. (2022). Developing Open Source Educational Resources for Machine Learning and Data Science. in Teaching Machine Learning Workshop at ECML 2022 https://arxiv.org/abs/2107.14330
Chen, W-F., Chen, M-H., Mudgal, G., & Wachsmuth, H. (2022). Analyzing Culture-Specific Argument Structures in Learner Essays. in G. Lapesa, J. Schneider, Y. Jo, & S. Saha (Hrsg.), Proceedings of the 9th Workshop on Argument Mining (S. 51 - 61). Association for Computational Linguistics (ACL). https://aclanthology.org/2022.argmining-1.4/
Deng, D., Karl, F., Hutter, F., Bischl, B., & Lindauer, M. (2022). Efficient Automated Deep Learning for Time Series Forecasting. in Proceedings of the European Conference on Machine Learning (ECML) https://doi.org/10.48550/arXiv.2205.05511
Deng, D., & Lindauer, M. (2022). Searching in the Forest for Local Bayesian Optimization. in ECML/PKDD workshop on Meta-learning https://arxiv.org/abs/2111.05834
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. T., & Hutter, F. (2022). Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. Journal of Machine Learning Research, 23. https://www.jmlr.org/papers/volume23/21-0992/21-0992.pdf
Hvarfner, C., Stoll, D., Souza, A. L. F., Lindauer, M., Hutter, F., & Nardi, L. (Angenommen/Im Druck). π BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. in Proceedings of the International conference on Learning Representation (ICLR) https://doi.org/10.48550/arXiv.2204.11051
Kiesel, J., Alshomary, M., Handke, N., Cai, X., Wachsmuth, H., & Stein, B. (2022). Identifying the Human Values behind Arguments. in S. Muresan, P. Nakov, & A. Villavicencio (Hrsg.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers (S. 4459 - 4471). (Proceedings of the Annual Meeting of the Association for Computational Linguistics; Band 1). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2022.acl-long.306
Lauscher, A., Wachsmuth, H., Gurevych, I., & Glavaš, G. (2022). On the Role of Knowledge in Computational Argumentation. https://doi.org/10.48550/arXiv.2107.00281
Lauscher, A., Wachsmuth, H., Gurevych, I., & Glavaš, G. (2022). Scientia Potentia Est—On the Role of Knowledge in Computational Argumentation. Transactions of the Association for Computational Linguistics, 10(10), 1392-1422. https://doi.org/10.1162/tacl_a_00525
Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Sass, R., & Hutter, F. (2022). SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. Journal of Machine Learning Research, 2022(23). https://arxiv.org/abs/2109.09831
Mallik, N., Hvarfner, C., Stoll, D., Janowski, M., Bergman, E., Lindauer, M. T., Nardi, L., & Hutter, F. (2022). PriorBand: HyperBand + Human Expert Knowledge. in 2022 NeurIPS Workshop on Meta Learning (MetaLearn) https://openreview.net/forum?id=ds21dwfBBH
Mohan, A., Ruhkopf, T., & Lindauer, M. (2022). Towards Meta-learned Algorithm Selection using Implicit Fidelity Information. in ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML) https://arxiv.org/abs/2206.03130
Moosbauer, J., Casalicchio, G., Lindauer, M., & Bischl, B. (2022). Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution. https://doi.org/10.48550/arXiv.2206.05447
Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T., Zhang, B., Nguyen, V., Calandra, R., Faust, A., Hutter, F., & Lindauer, M. (2022). Automated Reinforcement Learning (AutoRL): A Survey and Open Problems. Journal of Artificial Intelligence Research, 74(74), 517-568. https://doi.org/10.48550/arXiv.2201.03916, https://doi.org/10.1613/jair.1.13596
Sass, R., Bergman, E., Biedenkapp, A., Hutter, F., & Lindauer, M. (2022). DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning. in ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML) https://doi.org/10.48550/arXiv.2206.03493
Sengupta, M., Alshomary, M., & Wachsmuth, H. (2022). Back to the Roots: Predicting the Source Domain of Metaphors using Contrastive Learning. in Proceedings of the 2022 Workshop on Figurative Language Processing (S. 137-142). Association for Computational Linguistics (ACL).
Spliethöver, M., Keiff, M., & Wachsmuth, H. (2022). No Word Embedding Model Is Perfect: Evaluating the Representation Accuracy for Social Bias in the Media. in Proceedings of The 2022 Conference on Empirical Methods in Natural Language Processing (EMNLP 2022) (S. 2081-2093). Association for Computational Linguistics. https://doi.org/10.18653/v1/2022.findings-emnlp.152
Stahl, M., Spliethöver, M., & Wachsmuth, H. (2022). To Prefer or to Choose? Generating Agency and Power Counterfactuals Jointly for Gender Bias Mitigation. in Proceedings of the Fifth Workshop on Natural Language Processing and Computational Social Science (S. 39-51). (NLPCSS 2022 - 5th Workshop on Natural Language Processing and Computational Social Science ,NLP+CSS, Held at the 2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022). Association for Computational Linguistics (ACL). https://aclanthology.org/2022.nlpcss-1.6/
Wachsmuth, H., & Alshomary, M. (2022). "Mama Always Had a Way of Explaining Things So I Could Understand": A Dialogue Corpus for Learning How to Explain. in Proceedings of the 29th International Conference on Computational Linguistics (S. 344 - 354). International Committee on Computational Linguistics. https://doi.org/10.48550/arXiv.2209.02508
Wachsmuth, H., & Alshomary, M. (2022). “Mama Always Had a Way of Explaining Things So I Could Understand”: A Dialogue Corpus for Learning to Construct Explanations. Proceedings - International Conference on Computational Linguistics, COLING, 29(1), 344-354.

2021


Ajjour, Y., Al-Khatib, K., Cimiano, P., El Baff, R., Ell, B., Stein, B., & Wachsmuth, H. (2021). Preface. CEUR Workshop Proceedings, 2921. https://ceur-ws.org/Vol-2921/xpreface.pdf
Ajjour, Y., Al-Khatib, K., Cimiano, P., Baff, R. E., Ell, B., Stein, B., & Wachsmuth, H. (Hrsg.) (2021). Same Side Stance Classification Shared Task 2019. (CEUR Workshop Proceedings). http://ceur-ws.org/Vol-2921/
Al-Khatib, K., Trautner, L., Wachsmuth, H., Hou, Y., & Stein, B. (2021). Employing argumentation knowledge graphs for neural argument generation. in ACL-IJCNLP 2021 - 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, Proceedings of the Conference (S. 4744-4754). Association for Computational Linguistics (ACL). https://aclanthology.org/2021.acl-long.366.pdf
Alshomary, M., Chen, W. F., Gurcke, T., & Wachsmuth, H. (2021). Belief-based Generation of Argumentative Claims. in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics: Main Volume (S. 224-233). Association for Computational Linguistics (ACL). https://doi.org/10.48550/arXiv.2101.09765, https://doi.org/10.18653/v1/2021.eacl-main.17
Alshomary, M., Syed, S., Dhar, A., Potthast, M., & Wachsmuth, H. (2021). Counter-Argument Generation by Attacking Weak Premises: Counter-Argument Generation by Attacking Weak Premises. in C. Zong, F. Xia, W. Li, & R. Navigli (Hrsg.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (S. 1816-1827). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2021.findings-acl.159
Alshomary, M., Gurke, T., Syed, S., Heinisch, P., Spliethöver, M., Cimiano, P., Potthast, M., & Wachsmuth, H. (2021). Key Point Analysis via Contrastive Learning and Extractive Argument Summarization. in Proceedings of The 8th Workshop on Argument Mining, (S. 184-189). Association for Computational Linguistics (ACL). https://aclanthology.org/2021.argmining-1.19.pdf
Alshomary, M., & Wachsmuth, H. (2021). Toward audience-aware argument generation. Patterns, 2(6), [100253]. https://doi.org/10.1016/j.patter.2021.100253
Barrow, J., Jain, R., Lipka, N., Dernoncourt, F., Morariu, V. I., Manjunatha, V., Oard, D. W., Resnik, P., & Wachsmuth, H. (2021). Syntopical graphs for computational argumentation tasks. in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (S. 1583-1595). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2021.acl-long.126
Benjamins, C., Eimer, T., Schubert, F., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2021). CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning. in Workshop on Ecological Theory of Reinforcement Learning, NeurIPS 2021 https://arxiv.org/abs/2110.02102
Biedenkapp, A., Rajan, R., Hutter, F., & Lindauer, M. (2021). TempoRL: Learning When to Act. in Proceedings of the international conference on machine learning (ICML) https://arxiv.org/abs/2106.05262
Bondarenko, A., Gienapp, L., Fröbe, M., Beloucif, M., Ajjour, Y., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., & Hagen, M. (2021). Overview of Touché 2021: Argument Retrieval: Extended Abstract. in D. Hiemstra, M-F. Moens, J. Mothe, R. Perego, M. Potthast, & F. Sebastiani (Hrsg.), Advances in Information Retrieval: 43rd European Conference on IR Research, Proceedings (S. 574-582). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12657 LNCS). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-72240-1_67
Bondarenko, A., Gienapp, L., Fröbe, M., Beloucif, M., Ajjour, Y., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., & Hagen, M. (2021). Overview of Touché 2021: Argument retrieval. CEUR Workshop Proceedings, 2936, 2258-2284. https://ceur-ws.org/Vol-2936/paper-205.pdf
Bondarenko, A., Gienapp, L., Fröbe, M., Beloucif, M., Ajjour, Y., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., & Hagen, M. (2021). Overview of Touché 2021: Argument Retrieval. in K. S. Candan, B. Ionescu, L. Goeuriot, H. Müller, A. Joly, M. Maistro, F. Piroi, G. Faggioli, & N. Ferro (Hrsg.), Experimental IR Meets Multilinguality, Multimodality, and Interaction. 12th International Conference of the CLEF Association (CLEF 2021) (Band 12880, S. 450-467). (Lecture Notes in Computer Science). Springer. https://doi.org/10.1007/978-3-030-85251-1_28
Chen, W. F., Al-Khati, K., Stein, B., & Wachsmuth, H. (2021). Controlled Neural Sentence-Level Reframing of News Articles. in M-F. Moens, X. Huang, L. Specia, & S. W-T. Yih (Hrsg.), Findings of the Association for Computational Linguistics: EMNLP 2021 (S. 2683-2693). Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2021.findings-emnlp.228
Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Awad, N., Lindauer, M., & Hutter, F. (2021). HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO. in Proceedings of the international conference on Neural Information Processing Systems (NeurIPS) (Datasets and Benchmarks Track) https://arxiv.org/abs/2109.06716
Eimer, T., Biedenkapp, A., Reimer, M., Adriaensen, S., Hutter, F., & Lindauer, M. T. (2021). DACBench: A Benchmark Library for Dynamic Algorithm Configuration. in Z-H. Zhou (Hrsg.), Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21) (S. 1668-1674). (IJCAI International Joint Conference on Artificial Intelligence). https://doi.org/10.24963/ijcai.2021/230
Eimer, T., Benjamins, C., & Lindauer, M. T. (2021). Hyperparameters in Contextual RL are Highly Situational. in International Workshop on Ecological Theory of RL (at NeurIPS) https://doi.org/10.48550/arXiv.2212.10876
Eimer, T., Biedenkapp, A., Hutter, F., & Lindauer, M. (2021). Self-Paced Context Evaluation for Contextual Reinforcement Learning. in Proceedings of the international conference on machine learning (ICML) https://www.tnt.uni-hannover.de/papers/data/1454/space.pdf
Guerrero-Viu, J., Hauns, S., Izquierdo, S., Miotto, G., Schrodi, S., Biedenkapp, A., Elsken, T., Deng, D., Lindauer, M., & Hutter, F. (2021). Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization. in ICML 2021 Workshop AutoML https://arxiv.org/abs/2105.01015
Gurcke, T., Alshomary, M., & Wachsmuth, H. (2021). Assessing the Sufficiency of Arguments through Conclusion Generation. in 8th Workshop on Argument Mining, ArgMining 2021 - Proceedings (S. 67-77). Association for Computational Linguistics (ACL). https://doi.org/10.48550/arXiv.2110.13495
Hutter, F., Fuks, L., Lindauer, M., & Awad, N. (2021). Verfahren, Vorrichtung und Computerprogramm zum Erstellen einer Strategie für einen Roboter. (Patent Nr. DE102019210372A1). Deutsches Patent- und Markenamt (DPMA). https://worldwide.espacenet.com/patent/search?q=pn%3DCN112215363A
Kadra, A., Lindauer, M., Hutter, F., & Grabocka, J. (2021). Well-tuned Simple Nets Excel on Tabular Datasets. in Proceedings of the international conference on Advances in Neural Information Processing Systems (NeurIPS 2021) https://arxiv.org/abs/2106.11189
Kiesel, J., Spina, D., Wachsmuth, H., & Stein, B. (2021). The Meant, the Said, and the Understood: Conversational Argument Search and Cognitive Biases. in Proceedings of the 3rd Conference on Conversational User Interfaces, CUI 2021 [20] Association for Computing Machinery (ACM). https://doi.org/10.1145/3469595.3469615
Kiesel, D., Riehmann, P., Wachsmuth, H., Stein, B., & Froehlich, B. (2021). Visual Analysis of Argumentation in Essays. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1139-1148. [9222553]. https://doi.org/10.1109/TVCG.2020.3030425
Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Guyon, I., Hong, S., Hutter, F., Ji, R., Junior, J. C. S. J., Li, G., Lindauer, M., Luo, Z., Madadi, M., Nierhoff, T., Niu, K., Pan, C., Stoll, D., Treguer, S., ... Zhang, Y. (2021). Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3108-3125. [9415128]. https://doi.org/10.48550/arXiv.2201.03801, https://doi.org/10.1109/TPAMI.2021.3075372
Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., & Bischl, B. (2021). Explaining Hyperparameter Optimization via Partial Dependence Plots. in Proceedings of the international conference on Neural Information Processing Systems (NeurIPS) https://arxiv.org/abs/2111.04820
Nouri, Z., Prakash, N., Gadiraju, U., & Wachsmuth, H. (2021). iClarify: A Tool to Help Requesters Iteratively Improve Task Descriptions in Crowdsourcing. in Proceedings of the Ninth AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2021 AAAI Press/International Joint Conferences on Artificial Intelligence. https://www.humancomputation.com/2021/assets/wips_demos/HCOMP_2021_paper_111.pdf
Nouri, Z., Gadiraju, U., Engels, G., & Wachsmuth, H. (2021). What Is Unclear? Computational Assessment of Task Clarity in Crowdsourcing. in HT 2021 - Proceedings of the 32nd ACM Conference on Hypertext and Social Media (S. 165-175). Association for Computing Machinery, Inc. https://doi.org/10.1145/3465336.3475109
Rohlfing, K. J., Cimiano, P., Scharlau, I., Matzner, T., Buhl, H. M., Buschmeier, H., Esposito, E., Grimminger, A., Hammer, B., Hab-Umbach, R., Horwath, I., Hullermeier, E., Kern, F., Kopp, S., Thommes, K., Ngonga Ngomo, A. C., Schulte, C., Wachsmuth, H., Wagner, P., & Wrede, B. (2021). Explanation as a Social Practice: Toward a Conceptual Framework for the Social Design of AI Systems. IEEE Transactions on Cognitive and Developmental Systems, 13(3), 717-728. [9292993]. https://doi.org/10.1109/TCDS.2020.3044366
Schubert, F., Eimer, T., Rosenhahn, B., & Lindauer, M. (2021). Automatic Risk Adaptation in Distributional Reinforcement Learning. https://arxiv.org/abs/2106.06317
Skitalinskaya, G., Klaff, J., & Wachsmuth, H. (2021). Learning from revisions: Quality assessment of claims in argumentation at scale. in Proceedings of the 16th Conference of the European Chapter of the Association for Computational Linguistics (S. 1718-1729). Association for Computational Linguistics (ACL). https://doi.org/10.48550/arXiv.2101.10250, https://doi.org/10.18653/v1/2021.eacl-main.147
Souza, A., Nardi, L., Oliveira, L. B., Olukotun, K., Lindauer, M., & Hutter, F. (2021). Bayesian Optimization with a Prior for the Optimum. in N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, & J. A. Lozano (Hrsg.), Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Proceedings (Band 3, S. 265-296). (Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science); Band 12977). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-030-86523-8_17
Souza, A., Nardi, L., Oliveira, L. B., Olukotun, K., Lindauer, M., & Hutter, F. (2021). Prior-guided Bayesian Optimization. in Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021 https://arxiv.org/pdf/2006.14608
Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., & Lindauer, M. (2021). Learning Heuristic Selection with Dynamic Algorithm Configuration. in Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS) https://doi.org/10.1609/icaps.v31i1.16008
Spliethöver, M., & Wachsmuth, H. (2021). Bias Silhouette Analysis: Towards Assessing the Quality of Bias Metrics for Word Embedding Models. in Z-H. Zhou (Hrsg.), Proceedings of the 30th International Joint Conference on Artificial Intelligence, IJCAI 2021 (S. 552-559). (IJCAI International Joint Conference on Artificial Intelligence). AAAI Press/International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2021/77
Stein, B., Ajjour, Y., El Baff, R., Al-Khatib, K., Cimiano, P., & Wachsmuth, H. (2021). Same side stance classification. CEUR Workshop Proceedings, 2921, 1-7. https://ceur-ws.org/Vol-2921/overview.pdf