Publikationen des Institutes


Zeige Ergebnisse 85 - 126 von 209
First 1 2 3 4 5 Last

2021


Stürenburg, L., Denkena, B., Lindauer, M., & Wichmann, M. (2021). Maschinelles Lernen in der Prozessplanung. VDI-Z Integrierte Produktion, 163(11-12), 26-29.

doi.org/10.37544/0042-1766-2021-11-12-26

Syed, S., Al-Khatib, K., Alshomary, M., Wachsmuth, H., & Potthast, M. (2021). Generating Informative Conclusions for Argumentative Texts. in C. Zong, F. Xia, W. Li, & R. Navigli (Hrsg.), Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021 (S. 3482-3493). Association for Computational Linguistics (ACL).

doi.org/10.48550/arXiv.2106.01064

,

doi.org/10.18653/v1/2021.findings-acl.306

Tornede, T., Tornede, A., Wever, M., & Hüllermeier, E. (2021). Coevolution of Remaining Useful Lifetime Estimation Pipelines for Automated Predictive Maintenance. in Proceedings of the Genetic and Evolutionary Computation Conference

dl.acm.org/doi/pdf/10.1145/3449639.3459395

Tornede, T., Tornede, A., Hanselle, J., Wever, M., Mohr, F., & Hüllermeier, E. (2021). Towards Green Automated Machine Learning: Status Quo and Future Directions.

arxiv.org/abs/2111.05850

Wever, M., Tornede, A., Mohr, F., & Hüllermeier, E. (2021). AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3037-3054. [9321731].

doi.org/10.1109/TPAMI.2021.3051276

Zimmer, L., Lindauer, M., & Hutter, F. (2021). Auto-PyTorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3079-3090. [9382913].

doi.org/10.1109/TPAMI.2021.3067763


2020


Alexandrovsky, D., Volkmar, G., Spliethöver, M., Finke, S., Herrlich, M., Döring, T., Smeddinck, J. D., & Malaka, R. (2020). Playful User-Generated Treatment: A Novel Game Design Approach for VR Exposure Therapy. in CHI PLAY 2020 - Proceedings of the Annual Symposium on Computer-Human Interaction in Play (S. 32-45). Association for Computing Machinery, Inc.

doi.org/10.1145/3410404.3414222

Al-Khatib, K., Hou, Y., Wachsmuth, H., Jochim, C., Bonin, F., & Stein, B. (2020). End-to-End Argumentation Knowledge Graph Construction. Proceedings of the AAAI Conference on Artificial Intelligence, 34(5), 7367-7374.

doi.org/10.1609/aaai.v34i05.6231

Alshomary, M., Düsterhus, N., & Wachsmuth, H. (2020). Extractive Snippet Generation for Arguments. in SIGIR 2020: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval (S. 1969-1972). Association for Computing Machinery, Inc.

doi.org/10.1145/3397271.3401186

Alshomary, M., Syed, S., Potthast, M., & Wachsmuth, H. (2020). Target Inference in Argument Conclusion Generation. in D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Hrsg.), Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics (S. 4334-4345). (Proceedings of the Annual Meeting of the Association for Computational Linguistics). Association for Computational Linguistics.

doi.org/10.18653/v1/2020.acl-main.399

Awad, N., Shala, G., Deng, D., Mallik, N., Feurer, M., Eggensperger, K., Biedenkapp, A., Vermetten, D., Wang, H., Doerr, C., Lindauer, M., & Hutter, F. (2020). Squirrel: A Switching Hyperparameter Optimizer.

arxiv.org/abs/2012.08180

Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., & Lindauer, M. T. (2020). Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework. in G. De Giacomo, A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugarin, & J. Lang (Hrsg.), ECAI 2020 - 24th European Conference on Artificial Intelligence (S. 427-434). (Frontiers in Artificial Intelligence and Applications; Band 325).

doi.org/10.3233/FAIA200122

Biedenkapp, A., Rajan, R., Hutter, F., & Lindauer, M. T. (2020). Towards TempoRL Learning When to Act. Beitrag in ICML 2020 Inductive biases, invariances and generalization in RL workshop.

www.tnt.uni-hannover.de/papers/data/1455/20-BIG-TempoRL.pdf

Bondarenko, A., Fröbe, M., Beloucif, M., Gienapp, L., Ajjour, Y., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., & Hagen, M. (2020). Overview of Touché 2020: Argument Retrieval: Extended Abstract. in A. Arampatzis, E. Kanoulas, T. Tsikrika, S. Vrochidis, H. Joho, C. Lioma, C. Eickhoff, A. Névéol, A. Névéol, L. Cappellato, & N. Ferro (Hrsg.), Experimental IR Meets Multilinguality, Multimodality, and Interaction: 11th International Conference of the CLEF Association, CLEF 2020, Proceedings (S. 384-395). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12260 LNCS). Springer Science and Business Media Deutschland GmbH.

doi.org/10.1007/978-3-030-58219-7_26

Bondarenko, A., Fröbe, M., Beloucif, M., Gienapp, L., Ajjour, Y., Panchenko, A., Biemann, C., Stein, B., Wachsmuth, H., Potthast, M., & Hagen, M. (2020). Overview of Touché 2020: Argument Retrieval. CEUR Workshop Proceedings, 2696.

ceur-ws.org/Vol-2696/paper_261.pdf

Bondarenko, A., Hagen, M., Potthast, M., Wachsmuth, H., Beloucif, M., Biemann, C., Panchenko, A., & Stein, B. (2020). Touché: First Shared Task on Argument Retrieval. in J. M. Jose, E. Yilmaz, J. Magalhães, F. Martins, P. Castells, N. Ferro, & M. J. Silva (Hrsg.), Advances in Information Retrieval: 42nd European Conference on IR Research, ECIR 2020 (S. 517-523). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12036 LNCS). Springer.

doi.org/10.1007/978-3-030-45442-5_67

Chen, W-F., Al-Khatib, K., Wachsmuth, H., & Stein, B. (2020). Analyzing Political Bias and Unfairness in News Articles at Different Levels of Granularity. in D. Bamman, D. Hovy, D. Jurgens, B. O'Connor, & S. Volkova (Hrsg.), Proceedings of the Fourth Workshop on Natural Language Processing and Computational Social Science (S. 149-154). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/2020.nlpcss-1.16

Chen, W. F., Al-Khatib, K., Stein, B., & Wachsmuth, H. (2020). Detecting Media Bias in News Articles using Gaussian Bias Distributions. in Findings of the Association for Computational Linguistics: EMNLP 2020 (S. 4290-4300). Association for Computational Linguistics (ACL).

doi.org/10.48550/arXiv.2010.10649

,

doi.org/10.18653/v1/2020.findings-emnlp.383

da San Martino, G., Barrón-Cedeño, A., Wachsmuth, H., Petrov, R., & Nakov, P. (2020). SemEval-2020 Task 11: Detection of Propaganda Techniques in News Articles. in A. Herbelot, X. Zhu, A. Palmer, N. Schneider, J. May, & E. Shutova (Hrsg.), Proceedings of the 14th International Workshop on Semantic Evaluation (S. 1377-1414). International Committee for Computational Linguistics.

doi.org/10.48550/arXiv.2009.02696

,

doi.org/10.18653/v1/2020.semeval-1.186

Denkena, B., Dittrich, M-A., Lindauer, M. T., Mainka, J. M., & Stürenburg, L. K. (2020). Using AutoML to Optimize Shape Error Prediction in Milling Processes. SSRN Electronic Journal, 2020.

doi.org/10.2139/ssrn.3724234

Dorsch, J., & Wachsmuth, H. (2020). Semi-Supervised Cleansing of Web Argument Corpora. in E. Cabrio, & S. Villata (Hrsg.), Proceedings of the 7th Workshop on Argument Mining (S. 19-29). Association for Computational Linguistics (ACL).

doi.org/10.48550/arXiv.2011.01798

Eggensperger, K., Haase, K., Müller, P., Lindauer, M., & Hutter, F. (2020). Neural Model-based Optimization with Right-Censored Observations.

arxiv.org/abs/2009.13828

Eimer, T., Biedenkapp, A., Hutter, F., & Lindauer, M. T. (2020). Towards Self-Paced Context Evaluation for Contextual Reinforcement Learning.

www.tnt.uni-hannover.de/papers/data/1454/space.pdf

El Baff, R., Wachsmuth, H., Al-Khatib, K., & Stein, B. (2020). Analyzing the Persuasive Effect of Style in News Editorial Argumentation. in D. Jurafsky, J. Chai, N. Schluter, & J. Tetreault (Hrsg.), Proceedings of 58th Annual Meeting of the Association for Computational Linguistics (S. 3154-3160). (Proceedings of the Annual Meeting of the Association for Computational Linguistics). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/2020.acl-main.287

El Baff, R., Al-Khatib, K., Stein, B., & Wachsmuth, H. (2020). Persuasiveness of News Editorials depending on Ideology and Personality. in M. Nissim, V. Patti, B. Plank, & E. Durmus (Hrsg.), Proceedings of the Third Workshop on Computational Modeling of PEople’s Opinions, PersonaLity, and Emotions in Social media (S. 29-40). Association for Computational Linguistics (ACL).

aclanthology.org/2020.peoples-1.4

Hanselle, J., Tornede, A., Wever, M., & Hüllermeier, E. (2020). Hybrid Ranking and Regression for Algorithm Selection. in U. Schmid, D. Wolter, & F. Klügl (Hrsg.), KI 2020: Advances in Artificial Intelligence - 43rd German Conference on AI, Proceedings (Band 12325, S. 59-72). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12325 LNAI).

doi.org/10.1007/978-3-030-58285-2_5

Heindorf, S., Scholten, Y., Wachsmuth, H., Ngonga Ngomo, A. C., & Potthast, M. (2020). CauseNet: Towards a Causality Graph Extracted from the Web. in CIKM' 2020: Proceedings of the 29th ACM International Conference on Information and Knowledge Management (S. 3023-3030). Association for Computing Machinery (ACM).

doi.org/10.1145/3340531.3412763

Kiesel, J., Lang, K., Wachsmuth, H., Hornecker, E., & Stein, B. (2020). Investigating Expectations for Voice-based and Conversational Argument Search on the Web. in CHIIR 2020: Proceedings of the 2020 Conference on Human Information Interaction and Retrieval (S. 53-62). Association for Computing Machinery, Inc.

doi.org/10.1145/3343413.3377978

Lindauer, M., & Hutter, F. (2020). Best Practices for Scientific Research on Neural Architecture Search. Journal of Machine Learning Research, 21.

arxiv.org/abs/1909.02453

Nouri, Z., Wachsmuth, H., & Engels, G. (2020). Mining Crowdsourcing Problems from Discussion Forums of Workers. in D. Scott, N. Bel, & C. Zong (Hrsg.), Proceedings of the 28th International Conference on Computational Linguistics (S. 6264-6276). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/2020.coling-main.551

Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., & Hutter, F. (2020). Learning Step-Size Adaptation in CMA-ES. in T. Bäck, M. Preuss, A. Deutz, M. Emmerich, H. Wang, C. Doerr, & H. Trautmann (Hrsg.), Parallel Problem Solving from Nature – PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I (S. 691-706). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12269). Springer.

doi.org/10.1007/978-3-030-58112-1_48

Spliethöver, M., & Wachsmuth, H. (2020). Argument from Old Man's View: Assessing Social Bias in Argumentation. in E. Cabrio, & S. Villata (Hrsg.), Proceedings of the 7th Workshop on Argument Mining (S. 76-87). Association for Computational Linguistics (ACL).

aclanthology.org/2020.argmining-1.9

Syed, S., Chen, W. F., Hagen, M., Stein, B., Wachsmuth, H., & Potthast, M. (2020). Task Proposal: Abstractive Snippet Generation for Web Pages. in B. Davis, Y. Graham, J. Kelleher, & Y. Sripada (Hrsg.), Proceedings of The 13th International Conference on Natural Language Generation (S. 237-241). Association for Computational Linguistics (ACL).

aclanthology.org/2020.inlg-1.30

Tornede, A., Wever, M., & Hüllermeier, E. (2020). Extreme Algorithm Selection with Dyadic Feature Representation. in A. Appice, G. Tsoumakas, Y. Manolopoulos, & S. Matwin (Hrsg.), Discovery Science - 23rd International Conference, DS 2020, Proceedings: DS 2020: Discovery Science (Band 12323, S. 309-324). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12323 LNAI).

doi.org/10.1007/978-3-030-61527-7_21

Tornede, A., Wever, M., Werner, S., Mohr, F., & Hüllermeier, E. (2020). Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. in Proceedings of The 12th Asian Conference on Machine Learning

proceedings.mlr.press/v129/tornede20a.html

Tornede, A., Wever, M., & Hüllermeier, E. (2020). Towards Meta-Algorithm Selection. (4th Workshop on Meta-Learning at NeurIPS 2020).

arxiv.org/abs/2011.08784v1

Wachsmuth, H., & Werner, T. (2020). Intrinsic Quality Assessment of Arguments. in D. Scott, N. Bel, & C. Zong (Hrsg.), COLING 2020 - 28th International Conference on Computational Linguistics, Proceedings of the Conference (S. 6739-6745). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/2020.coling-main.592

Wever, M., Tornede, A., Mohr, F., & Hüllermeier, E. (2020). LiBRe: Label-Wise Selection of Base Learners in Binary Relevance for Multi-Label Classification. in Lecture Notes in Computer Science: IDA 2020: Advances in Intelligent Data Analysis XVIII

link.springer.com/chapter/10.1007/978-3-030-44584-3_44


2019


Ajjour, Y., Wachsmuth, H., Kiesel, J., Potthast, M., Hagen, M., & Stein, B. (2019). Data Acquisition for Argument Search: The args.me Corpus. in C. Benzmüller, & H. Stuckenschmidt (Hrsg.), KI 2019: Advances in Artificial Intelligence: 42nd German Conference on AI, Proceedings (S. 48-59). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11793 LNAI). Springer Verlag.

doi.org/10.1007/978-3-030-30179-8_4

Ajjour, Y., Alshomary, M., Wachsmuth, H., & Stein, B. (2019). Modeling Frames in Argumentation. in K. Inui, J. Jiang, V. Ng, & X. Wan (Hrsg.), Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (S. 2922-2932). Association for Computational Linguistics.

doi.org/10.18653/v1/D19-1290

Alshomary, M., & Wachsmuth, H. (2019). Siamese Neural Network for Same Side Stance Classification. CEUR Workshop Proceedings, 2921, 12-16.

www.semanticscholar.org/paper/Siamese-Neural-Network-for-Same-Side-Stance-Alshomary-Wachsmuth/291badf5e32dfada9ab2aea2005646a5c6065ecf

Alshomary, M., Völske, M., Licht, T., Wachsmuth, H., Stein, B., Hagen, M., & Potthast, M. (2019). Wikipedia Text Reuse: Within and Without. in B. Stein, N. Fuhr, L. Azzopardi, P. Mayr, D. Hiemstra, & C. Hauff (Hrsg.), Advances in Information Retrieval: 41st European Conference on IR Research, ECIR 2019, Proceedings (S. 747-754). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11437 LNCS). Springer Verlag.

doi.org/10.1007/978-3-030-15712-8_49