Publikationen des Institutes


Zeige Ergebnisse 127 - 168 von 209
First 1 2 3 4 5 Last

2019


Biedenkapp, A., Bozkurt, H. F., Hutter, F., & Lindauer, M. (2019). Towards White-box Benchmarks for Algorithm Control.

arxiv.org/abs/1906.07644

Eggensperger, K., Lindauer, M., & Hutter, F. (2019). Pitfalls and Best Practices in Algorithm Configuration. Journal of Artificial Intelligence Research, 64, 861-893.

doi.org/10.1613/jair.1.11420

El Baff, R., Wachsmuth, H., Al-Khatib, K., Stede, M., & Stein, B. (2019). Computational Argumentation Synthesis as a Language Modeling Task. in Proceedings of The 12th International Conference on Natural Language Generation (S. 54-64). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/W19-8607

Fuks, L., Awad, N., Hutter, F., & Lindauer, M. (2019). An evolution strategy with progressive episode lengths for playing games. in S. Kraus (Hrsg.), Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 (S. 1234-1240). (IJCAI International Joint Conference on Artificial Intelligence). AAAI Press/International Joint Conferences on Artificial Intelligence.

doi.org/10.24963/ijcai.2019/172

Lindauer, M. T. (2019). Automated Algorithm Selection –Predict which algorithm to use!.

www.google.com/url

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Marben, J., Müller, P., & Hutter, F. (2019). BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters.

arxiv.org/pdf/1908.06756

Lindauer, M. T. (2019). Hands-On Automated Machine Learning Tools: Auto-Sklearn and Auto-PyTorch.

www.google.com/url

Lindauer, M., van Rijn, J. N., & Kotthoff, L. (2019). The algorithm selection competitions 2015 and 2017. Artificial intelligence, 272, 86-100.

doi.org/10.1016/j.artint.2018.10.004

Lindauer, M., Feurer, M., Eggensperger, K., Biedenkapp, A., & Hutter, F. (2019). Towards Assessing the Impact of Bayesian Optimization’s Own Hyperparameters. in DSO Workshop at IJCAI

arxiv.org/abs/1908.06674

Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., Urban, M., Burkart, M., Dippel, M., Lindauer, M. T., & Hutter, F. (2019). Towards Automatically-Tuned Deep Neural Networks. in Automated Machine Learning

doi.org/10.1007/978-3-030-05318-5_7

Mohr, F., Wever, M., Tornede, A., & Hüllermeier, E. (2019). From Automated to On-The-Fly Machine Learning. in INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik–Informatik für Gesellschaft

dl.gi.de/handle/20.500.12116/24989

Potthast, M., Gienapp, L., Euchner, F., Heilenkötter, N., Weidmann, N., Wachsmuth, H., Stein, B., & Hagen, M. (2019). Argument Search: Assessing Argument Relevance. in SIGIR 2019: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval (S. 1117-1120). Association for Computing Machinery, Inc.

doi.org/10.1145/3331184.3331327

Skitalinskaya, G., Klaff, J., & Spliethöver, M. (2019). CLEF ProtestNews Lab 2019: Contextualized word embeddings for event sentence detection and event extraction. CEUR Workshop Proceedings, 2380.

ceur-ws.org/Vol-2380/paper_118.pdf

Spliethöver, M., Klaff, J., & Heuer, H. (2019). Is It Worth the Attention? A Comparative Evaluation of Attention Layers for Argument Unit Segmentation. in B. Stein, & H. Wachsmuth (Hrsg.), Proceedings of the 6th Workshop on Argument Mining (S. 74-82). Association for Computational Linguistics.

doi.org/10.18653/v1/W19-4509

Stein, B., & Wachsmuth, H. (2019). Introduction. in B. Stein, & H. Wachsmuth (Hrsg.), Proceedings of the 6th Workshop on Argument Mining Association for Computational Linguistics (ACL).

Stein, B., & Wachsmuth, H. (Hrsg.) (2019). Proceedings of the 6th Workshop on Argument Mining. Association for Computational Linguistics (ACL).

aclanthology.org/W19-45

Tornede, A., Wever, M., & Hüllermeier, E. (2019). Algorithm Selection as Recommendation: From Collaborative Filtering to Dyad Ranking. in 29th Workshop Computational Intelligence

ris.uni-paderborn.de/download/15011/17060/ci_workshop_tornede.pdf

Tornede, T., Tornede, A., Wever, M., Mohr, F., & Hüllermeier, E. (2019). AutoML for Predictive Maintenance: One Tool to RUL them all. in IoT Streams 2020: IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning

link.springer.com/chapter/10.1007/978-3-030-66770-2_8

Wachsmuth, H. (2019). Argumentation Mining. By Manfred Stede and Jodi Schneider (University of Potsdam, University of Illinois at Urbana-Champaign). Morgan & Claypool (Synthesis Lectures on Human Language Technologies, edited by Graeme Hirst, volume 40), 2018, xvi+175 pp; paperback, ISBN 978-1-68173-459-0; ebook, ISBN 978-1-68173-460-6; doi:10.2200/S00883ED1V01Y201811HLT040: Argumentation Mining. Computational Linguistics, 45(3).

doi.org/10.1162/coli_r_00358

Wever, M., Mohr, F., Tornede, A., & Hüllermeier, E. (2019). Automating Multi-Label Classification Extending ML-Plan. in ICML 2019 Workshop AutoML

ris.uni-paderborn.de/download/10232/13177/Automating_MultiLabel_Classification_Extending_ML-Plan.pdf


2018


Ajjour, Y., Wachsmuth, H., Kiesel, D., Riehmann, P., Fan, F., Castiglia, G., Adejoh, R., Fröhlich, B., & Stein, B. (2018). Visualization of the Topic Space of Argument Search Results in args.me. in E. Blanco, & W. Lu (Hrsg.), Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (System Demonstrations) (S. 60-65). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/d18-2011

Al-Khatib, K., Wachsmuth, H., Lang, K., Herpel, J., Hagen, M., & Stein, B. (2018). Modeling Deliberative Argumentation Strategies on Wikipedia. in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Long Papers) (S. 2545-2555). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/p18-1237

Biedenkapp, A., Marben, J., Lindauer, M., & Hutter, F. (2018). CAVE: Configuration Assessment, Visualization and Evaluation. in P. M. Pardalos, R. Battiti, M. Brunato, & I. Kotsireas (Hrsg.), Learning and Intelligent Optimization (S. 115-130). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 11353 LNCS). Springer Verlag.

doi.org/10.1007/978-3-030-05348-2_10

Bonfert, M., Spliethöver, M., Arzaroli, R., Lange, M., Hanci, M., & Porzel, R. (2018). If You Ask Nicely: A Digital Assistant Rebuking Impolite Voice Commands. in Proceedings of the 20th ACM International Conference on Multimodal Interaction (S. 95-102). Association for Computing Machinery (ACM).

doi.org/10.1145/3242969.3242995

Chen, W. F., Wachsmuth, H., Al-Khatib, K., & Stein, B. (2018). Learning to Flip the Bias of News Headlines. in Proceedings of the 11th International Conference on Natural Language Generation (S. 79-88). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/W18-6509

Eggensperger, K., Lindauer, M., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2018). Efficient benchmarking of algorithm configurators via model-based surrogates. Machine learning, 107(1), 15-41.

doi.org/10.1007/s10994-017-5683-z

Eggensperger, K., Lindauer, M., & Hutter, F. (2018). Neural Networks for Predicting Algorithm Runtime Distributions. in J. Lang (Hrsg.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (S. 1442-1448). AAAI Press/International Joint Conferences on Artificial Intelligence.

doi.org/10.24963/ijcai.2018/200

El Baff, R., Wachsmuth, H., Al-Khatib, K., & Stein, B. (2018). Challenge or Empower: Revisiting Argumentation Quality in a News Editorial Corpus. in Proceedings of the 22nd Conference on Computational Natural Language Learning (CoNLL 2018) (S. 454-464). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/k18-1044

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. T., & Hutter, F. (2018). Practical Automated Machine Learning for the AutoML Challenge 2018.

www.tnt.uni-hannover.de/papers/data/1407/18-AUTOML-AutoChallenge.pdf

Habernal, I., Wachsmuth, H., Gurevych, I., & Stein, B. (2018). Before Name-calling: Dynamics and Triggers of Ad Hominem Fallacies in Web Argumentation. in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (S. 386-396). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/N18-1036

Habernal, I., Wachsmuth, H., Gurevych, I., & Stein, B. (2018). SemEval-2018 Task 12: The Argument Reasoning Comprehension Task. in M. Apidianaki, M. Apidianaki, S. M. Mohammad, J. May, E. Shutova, S. Bethard, & M. Carpuat (Hrsg.), Proceedings of the 12th International Workshop on Semantic Evaluation (S. 763-772). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/S18-1121

Habernal, I., Wachsmuth, H., Gurevych, I., & Stein, B. (2018). The Argument Reasoning Comprehension Task: Identification and Reconstruction of Implicit Warrants. in M. Walker, H. Ji, & A. Stent (Hrsg.), Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers) (S. 1930-1940). Association for Computational Linguistics (ACL).

doi.org/10.48550/arXiv.1708.01425

,

doi.org/10.18653/v1/N18-1175

Kiesel, D., Riehmann, P., Fan, F., Ajjour, Y., Wachsmuth, H., Stein, B., & Fröhlich, B. (2018). Improving Barycentric Embeddings of Topics Spaces. in IEEE VIS 2018 IEEE.

Lindauer, M., Hoos, H., Hutter, F., & Leyton-Brown, K. (2018). Selection and Configuration of Parallel Portfolios. in Handbook of Parallel Constraint Reasoning (S. 583-615). Springer International Publishing AG.

doi.org/10.1007/978-3-319-63516-3_15

Lindauer, M. T., van Rijn, J. N., & Kotthoff, L. (2018). The Algorithm Selection Competition Series 2015-17.

arxiv.org/abs/1805.01214v1

Lindauer, M., & Hutter, F. (2018). Warmstarting of Model-Based Algorithm Configuration. in 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (S. 1355-1362). (Proceedings of the AAAI Conference on Artificial Intelligence). AAAI Press/International Joint Conferences on Artificial Intelligence.

arxiv.org/abs/1709.04636v3

Wachsmuth, H., Stede, M., El Baff, R., Al-Khatib, K., Skeppstedt, M., & Stein, B. (2018). Argumentation Synthesis following Rhetorical Strategies. in E. M. Bender, L. Derczynski, & P. Isabelle (Hrsg.), Proceedings of the 27th International Conference on Computational Linguistics (S. 3753-3765). Association for Computational Linguistics (ACL).

aclanthology.org/C18-1318

Wachsmuth, H., Syed, S., & Stein, B. (2018). Retrieval of the Best Counterargument without Prior Topic Knowledge. in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (S. 241-251). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/p18-1023

Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., & Hutter, F. (2018). A case study of algorithm selection for the traveling thief problem. Journal of heuristics, 24(3), 295-320.

doi.org/10.1007/s10732-017-9328-y


2017


Ajjour, Y., Chen, W. F., Kiesel, J., Wachsmuth, H., & Stein, B. (2017). Unit Segmentation of Argumentative Texts. in I. Habernal, I. Gurevych, K. Ashley, C. Cardie, N. Green, D. Litman, G. Petasis, C. Reed, N. Slonim, & V. Walker (Hrsg.), Proceedings of the 4th Workshop on Argument Mining (S. 118-128). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/W17-5115

Al-Khatib, K., Wachsmuth, H., Hagen, M., & Stein, B. (2017). Patterns of Argumentation Strategies across Topics. in Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (S. 1351-1357). Association for Computational Linguistics (ACL).

doi.org/10.18653/v1/d17-1141

Biedenkapp, A., Lindauer, M., Eggensperger, K., Hutter, F., Fawcett, C., & Hoos, H. H. (2017). Efficient Parameter Importance Analysis via Ablation with Surrogates.

www.google.com/url