Henning Wachsmuth


Prof. Dr. rer. nat. Henning Wachsmuth
Telefon
Adresse
Appelstraße 9a
30167 Hannover
30167 Hannover
Gebäude
Raum


Prof. Dr. rer. nat. Henning Wachsmuth
Telefon
Publications
Zeige Ergebnisse 1 - 20 von 109
Alshomary M, Wachsmuth H. Conclusion-based Counter-Argument Generation. in EACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference. Association for Computational Linguistics (ACL). 2023. S. 957-967 Epub 2023 Jan 24. doi: 10.48550/arXiv.2301.09911
Mehr...
Faggioli G, Clarke CLA, Demartini G, Hagen M, Hauff C, Kando N et al. Perspectives on Large Language Models for Relevance Judgment. in ICTIR '23: Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval. Association for Computing Machinery, Inc. 2023. S. 39-50 doi: 10.48550/arXiv.2304.09161, 10.1145/3578337.3605136
Mehr...
Kiesel J, Alshomary M, Mirzakhmedova N, Heinrich M, Handke N, Wachsmuth H et al.. SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments. 2023. doi: 10.18653/V1/2023.SEMEVAL-1.313
Mehr...
Lapesa G, Vecchi EM, Villata S, Wachsmuth H. Mining, Assessing, and Improving Arguments in NLP and the Social Sciences. in Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts. Association for Computational Linguistics (ACL). 2023 doi: 10.18653/v1/2023.eacl-tutorials.1
Mehr...
Nouri Z, Prakash N, Gadiraju U, Wachsmuth H. Supporting Requesters in Writing Clear Crowdsourcing Task Descriptions Through Computational Flaw Assessment. in IUI 2023 - Proceedings of the 28th International Conference on Intelligent User Interfaces. New York, NY, USA: Association for Computing Machinery (ACM). 2023. S. 737–749 doi: 10.1145/3581641.3584039
Mehr...
Skitalinskaya G, Spliethöver M, Wachsmuth H. Claim Optimization in Computational Argumentation. 2023. doi: 10.48550/arXiv.2212.08913
Mehr...
Skitalinskaya G, Wachsmuth H. To Revise or Not to Revise: Learning to Detect Improvable Claims for Argumentative Writing Support. in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers). Association for Computational Linguistics (ACL). 2023. S. 15799–15816. (Proceedings of the Annual Meeting of the Association for Computational Linguistics). doi: 10.18653/v1/2023.acl-long.880
Mehr...
Stahl M, Wachsmuth H. Identifying Feedback Types to Augment Feedback Comment Generation. in Proceedings of the 16th International Natural Language Generation Conference: Generation Challenges. 2023. S. 31-36
Mehr...
Syed S, Ziegenbein T, Heinisch P, Wachsmuth H, Potthast M. Frame-oriented Summarization of Argumentative Discussions. 2023.
Mehr...
Tornede A, Deng D, Eimer T, Giovanelli J, Mohan A, Ruhkopf T et al. AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks. 2023 Jun 13. Epub 2023 Jun 13. doi: 10.48550/arXiv.2306.08107
Mehr...
Ziegenbein T, Syed S, Lange F, Potthast M, Wachsmuth H. Modeling Appropriate Language in Argumentation. in Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics. Association for Computational Linguistics (ACL). 2023. S. 4344-4363. (Proceedings of the Annual Meeting of the Association for Computational Linguistics). doi: 10.18653/v1/2023.acl-long.238
Mehr...
Alshomary M, Rieskamp J, Wachsmuth H. Generating Contrastive Snippets for Argument Search. in Toni F, Polberg S, Booth R, Caminada M, Kido H, Hrsg., Computational Models of Argument: Proceedings of COMMA 2022. Amsterdam: IOS Press. 2022. S. 21-31. (Frontiers in Artificial Intelligence and Applications). doi: 10.3233/FAIA220138
Mehr...
Alshomary M, El Baff R, Gurcke T, Wachsmuth H. The Moral Debater: A Study on the Computational Generation of Morally Framed Arguments. in Muresan S, Nakov P, Villavicencio A, Hrsg., Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers. Association for Computational Linguistics (ACL). 2022. S. 8782 - 8797. (Proceedings of the Annual Meeting of the Association for Computational Linguistics). doi: 10.48550/arXiv.2203.14563, 10.18653/v1/2022.acl-long.601
Mehr...
Bondarenko A, Fröbe M, Kiesel J, Syed S, Gurcke T, Beloucif M et al. Overview of Touché 2022: Argument Retrieval. CEUR Workshop Proceedings. 2022;3180:2867-2903.
Mehr...
Bondarenko A, Fröbe M, Kiesel J, Syed S, Gurcke T, Beloucif M et al. Overview of Touché 2022: Argument Retrieval: Argument Retrieval: Extended Abstract. in Hagen M, Verberne S, Macdonald C, Seifert C, Balog K, Nørvåg K, Setty V, Hrsg., Advances in Information Retrieval: 44th European Conference on IR Research, ECIR 2022, Proceedings. Part 2 Aufl. Springer Science and Business Media Deutschland GmbH. 2022. S. 339-346. (Lecture Notes in Computer Science). doi: 10.1007/978-3-030-99739-7_43
Mehr...
Chen W-F, Chen M-H, Mudgal G, Wachsmuth H. Analyzing Culture-Specific Argument Structures in Learner Essays. in Lapesa G, Schneider J, Jo Y, Saha S, Hrsg., Proceedings of the 9th Workshop on Argument Mining. Association for Computational Linguistics (ACL). 2022. S. 51 - 61
Mehr...
Kiesel J, Alshomary M, Handke N, Cai X, Wachsmuth H, Stein B. Identifying the Human Values behind Arguments. in Muresan S, Nakov P, Villavicencio A, Hrsg., Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics Volume 1: Long Papers. Association for Computational Linguistics (ACL). 2022. S. 4459 - 4471. (Proceedings of the Annual Meeting of the Association for Computational Linguistics). doi: 10.18653/v1/2022.acl-long.306
Mehr...
Lauscher A, Wachsmuth H, Gurevych I, Glavaš G. On the Role of Knowledge in Computational Argumentation. 2022. Epub 2022. doi: 10.48550/arXiv.2107.00281
Mehr...
Lauscher A, Wachsmuth H, Gurevych I, Glavaš G. Scientia Potentia Est—On the Role of Knowledge in Computational Argumentation. Transactions of the Association for Computational Linguistics. 2022 Dez 22;10(10):1392-1422. doi: 10.1162/tacl_a_00525
Mehr...
Sengupta M, Alshomary M, Wachsmuth H. Back to the Roots: Predicting the Source Domain of Metaphors using Contrastive Learning. in Proceedings of the 2022 Workshop on Figurative Language Processing. Association for Computational Linguistics (ACL). 2022. S. 137-142
Mehr...