Institut
Marius Lindauer
Prof. Dr. rer. nat. Marius Lindauer
Adresse
Welfengarten 1
30167 Hannover
Gebäude
Raum
Prof. Dr. rer. nat. Marius Lindauer
Adresse
Welfengarten 1
30167 Hannover
Gebäude
Raum

In recent years, AI achieved impressive results in different fields, incl. in computer vision, natural language processing and reinforcement learning. These breakthroughs show how AI will influence and change our daily lives, business and even research in many aspects. With the advent of deep learning and also traditional AI methods, such as AI planning, SAT solving or evolutionary algorithms, a multitude of different techniques are available these days. However, applying these techniques is challenging, and even experienced AI developers are faced with several difficult design decisions, making the development of new AI applications a tedious, error-prone and time-consuming task. Therefore, we develop new approaches to increase efficiency in AI application development by reducing the required expert knowledge, improving development time and reducing chances of error. We do this with democratization of AI and social responsibility in mind.

Research Interests

Actually, I'm interested in many topics related to AutoML, machine learning, AI and interdisciplinary applications of these. Here are some selected topics:

  • Green-AutoML
  • Human-centered AutoML
  • Dynamic Algorithm Configuration
  • Generalization of Reinforcement Learning
  • Applications to production or health/medicine

Curriculum Vitae

Publications


Zeige Ergebnisse 1 - 20 von 97
1 2 3 4 5 Last

2023


Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (Angenommen/Im Druck). Contextualize Me -- The Case for Context in Reinforcement Learning. Beitrag in European Workshop on Reinforcement Learning 2023, Brüssel.
Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (Angenommen/Im Druck). Contextualize Me – The Case for Context in Reinforcement Learning. Transactions on Machine Learning Research. https://doi.org/10.48550/arXiv.2202.04500
Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., & Lindauer, M. (Angenommen/Im Druck). Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. in AutoML Conference 2023 PMLR.
Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., & Lindauer, M. (Angenommen/Im Druck). Towards Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. in GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference Companion Association for Computing Machinery Special Interest Group on Genetic and Evolutionary Computation (SIGEVO).
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A-L., Deng, D., & Lindauer, M. (2023). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), [e1484]. https://doi.org/10.1002/widm.1484
Denkena, B., Dittrich, M-A., Noske, H., Lange, D., Benjamins, C., & Lindauer, M. (2023). Application of machine learning for fleet-based condition monitoring of ball screw drives in machine tools. The international journal of advanced manufacturing technology, 127(3-4), 1143-1164. https://doi.org/10.1007/s00170-023-11524-9
Eimer, T., Lindauer, M., & Raileanu, R. (2023). Hyperparameters in Reinforcement Learning and How to Tune Them. in ICML'23: Proceedings of the 40th International Conference on Machine Learning (S. 9104–9149). [366] https://doi.org/10.48550/arXiv.2306.01324, https://doi.org/10.5555/3618408.3618774
Eimer, T., Lindauer, M., & Raileanu, R. (Angenommen/Im Druck). Hyperparameters in Reinforcement Learning and How To Tune Them. in Proceeding of the Fortieth International Conference on Machine Learning (Proceeding of the International Conference on Machine Learning).
Giovanelli, J., Tornede, A., Tornede, T., & Lindauer, M. (2023). Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning.
Hutter, F., Fuks, L., Lindauer, M., & Awad, N. (2023). Method, device and computer program for producing a strategy for a robot. (Patent Nr. US11628562B2). https://patentimages.storage.googleapis.com/f9/b3/d5/7596bf6bb838dd/US11628562.pdf
Loni, M., Mohan, A., Asadi, M., & Lindauer, M. (Angenommen/Im Druck). Learning Activation Functions for Sparse Neural Networks. in Second International Conference on Automated Machine Learning PMLR. https://arxiv.org/abs/2305.10964
Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., & Hutter, F. (2023). PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning. in Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS) https://doi.org/10.48550/arXiv.2306.12370
Mohan, A., Zhang, A., & Lindauer, M. (2023). A Patterns Framework for Incorporating Structure in Deep Reinforcement Learning. https://openreview.net/forum?id=KkKWsPLlAx&referrer=%5BAuthor%20Console%5D(%2Fgroup%3Fid%3DEWRL%2F2023%2FWorkshop%2FAuthors%23your-submissions)
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., & Lindauer, M. (Angenommen/Im Druck). AutoRL Hyperparameter Landscapes. in Second International Conference on Automated Machine Learning PMLR. https://doi.org/10.48550/arXiv.2304.02396
Mohan, A., Zhang, A., & Lindauer, M. (2023). Structure in Reinforcement Learning: A Survey and Open Problems. (Journal of Artificial Intelligence Research).
Neutatz, F., Lindauer, M., & Abedjan, Z. (2023). AutoML in Heavily Constrained Applications. VLDB Journal. https://doi.org/10.48550/arXiv.2306.16913, https://doi.org/10.1007/s00778-023-00820-1
Ruhkopf, T., Mohan, A., Deng, D., Tornede, A., Hutter, F., & Lindauer, M. (2023). MASIF: Meta-learned Algorithm Selection using Implicit Fidelity Information. Transactions on Machine Learning Research. https://openreview.net/forum?id=5aYGXxByI6
Schubert, F., Benjamins, C., Döhler, S., Rosenhahn, B., & Lindauer, M. (2023). POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning. Transactions on Machine Learning Research. https://doi.org/10.48550/arXiv.2205.11357
Segel, S., Graf, H., Tornede, A., Bischl, B., & Lindauer, M. (Angenommen/Im Druck). Symbolic Explanations for Hyperparameter Optimization. in AutoML Conference 2023 PMLR. https://doi.org/10.5281/zenodo.8123425
Shoaib, M., Kotthoff, L., Lindauer, M., & Kant, S. (2023). AutoML: advanced tool for mining multivariate plant traits. Trends in Plant Science, 28(12), 1451-1452. https://doi.org/10.1016/j.tplants.2023.09.008