Dr. rer. nat. Marcel Wever
Adresse
Welfengarten 1
30167 Hannover
Gebäude
Raum
Dr. rer. nat. Marcel Wever
Adresse
Welfengarten 1
30167 Hannover
Gebäude
Raum

My research is centered around automated machine learning (AutoML) and related topics such as meta-learning, hyperparameter optimization, algorithm configuration and algorithm selection, as well as supervised learning methods. Specifically, I am interested in methods for multi-label classification. Beyond that, my research interests are widespread and include uncertainty quantification, evolutionary machine learning, machine learning in IT security, part of speech tagging, service-oriented software architectures, and (co-)active learning.

 

Research Interests

  • Interactive and Explainable AutoML
  • Green AutoML
  • Meta-Learning
  • Hyperparameter Optimization
  • Algorithm Configuration and Algorithm Selection
  • Multi-Label Classification
  • (Co-)Active learning

Further research interests:

  • Uncertainty quantification
  • Evolutionary machine learning
  • Machine learning in IT security
  • Part-of-speech tagging
  • Service-oriented software architectures

Curriculum Vitae

  • Working Experience

    2024 - Present
    Postdoctoral Researcher,
    Leibniz University Hannover

    2023 - 2024
    Expert Consultant for Machine Learning, Fraunhofer IEM

    2022 - 2024
    Transfer Coordinator for Education, Munich Center for Machine Learning

    2021 - 2024
    Postdoctoral Researcher, LMU Munich

    2017 - 2021
    Doctoral Researcher, Paderborn University

  • Education

    2017 - 2021
    Ph.D. Student (Dr. rer. nat) supervised by Prof. Dr. Eyke Hüllermeier, Paderborn University

    2015 - 2017
    Master of Science, Computer Science, Paderborn University

    2011 - 2015
    Bachelor of Science, Computer Science, Paderborn University

  • Selected Awards

    2022
    Outstanding reviewer at NeurIPS 2022.

    2021
    Outstanding reviewer at ICML 2021.

    2020
    Outstanding reviewer at ICML 2020.

    2020
    Frontier Prize for the most visionary contribution at the International Symposium on Intelligent Data Analysis, 2020.

    2019
    Young author award at the Computational Intelligence Workshop, Dortmund, 2019.

    2017
    Young author award at the Computational Intelligence Workshop, Dortmund, 2017.

    Best paper award for the SBSE/ACO-SI track at the Genetic and Evolutionary Computation Conference (GECCO), 2017.

  • Memberships

    2020 - Present
    Member of the Benchmarking network

    2019 - Present
    Core developer
    of OpenML

    2019 - Present
    Member
    of the COSEAL network

  • Social Media

Publications

Zeige Ergebnisse 1 - 30 von 47

2024


Brandt, J., Wever, M., Bengs, V., & Hüllermeier, E. (2024). Best Arm Identification with Retroactively Increased Sampling Budget for More Resource-Efficient HPO. 3742-3750. Beitrag in Thirty-Third International Joint Conference on Artificial Intelligence, IJCAI-24, Jeju, Südkorea. https://doi.org/10.24963/ijcai.2024/414
Gupta, P., Wever, M., & Hüllermeier, E. (2024). Information Leakage Detection through Approximate Bayes-optimal Prediction. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2401.14283
Herrmann, M., Lange, F. J. D., Eggensperger, K., Casalicchio, G., Wever, M., Feurer, M., Rügamer, D., Hüllermeier, E., Boulesteix, A.-L., & Bischl, B. (2024). Position: Why We Must Rethink Empirical Research in Machine Learning. In Proceedings of the international conference on machine learning Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2405.02200
Iliadis, D., Wever, M., De baets, B., & Waegeman, W. (2024). Hyperparameter optimization of two-branch neural networks in multi-target prediction. Applied soft computing, 165, 111957. Artikel 111957. Vorabveröffentlichung online. https://doi.org/10.1016/j.asoc.2024.111957
Margraf, V., Wever, M., Gilhuber, S., Tavares, G. M., Seidl, T., & Hüllermeier, E. (2024). ALPBench: A Benchmark for Active Learning Pipelines on Tabular Data. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2406.17322

2023


Brandt, J., Wever, M., Iliadis, D., Bengs, V., & Hüllermeier, E. (2023). Iterative Deepening Hyperband. (CoRR). Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2302.00511
Hanselle, J., Hüllermeier, E., Mohr, F., Ngomo, A. C. N., Sherif, M. A., Tornede, A., & Wever, M. D. (2023). Configuration and Evaluation. In On-The-Fly Computing -- Individualized IT-services in dynamic markets https://doi.org/10.5281/zenodo.8068466
Merten, M. L., Wever, M., Geierhos, M., Tophinke, D., & Hüllermeier, E. (2023). Annotation uncertainty in the context of grammatical change. International Journal of Corpus Linguistics, 28(3), 430-459. https://doi.org/10.1075/ijcl.20113.mer
Mohr, F., & Wever, M. (2023). Naive automated machine learning. Machine learning, 112(4), 1131-1170. https://doi.org/10.1007/s10994-022-06200-0
Schede, E., Brandt, J., Tornede, A., Wever, M., Bengs, V., Hüllermeier, E., & Tierney, K. (2023). A Survey of Methods for Automated Algorithm Configuration (Extended Abstract). In E. Elkind (Hrsg.), Proceedings of the 32nd International Joint Conference on Artificial Intelligence, IJCAI 2023 (S. 6964-6968). (IJCAI International Joint Conference on Artificial Intelligence; Band 2023-August). AAAI Press/International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2023/791
Schubert, D., Gupta, P., & Wever, M. (2023). Meta-learning for Automated Selection of Anomaly Detectors for Semi-supervised Datasets. In B. Crémilleux, S. Hess, & S. Nijssen (Hrsg.), Advances in Intelligent Data Analysis XXI - 21st International Symposium on Intelligent Data Analysis, IDA 2023, Proceedings (S. 392-405). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 13876 LNCS). https://doi.org/10.1007/978-3-031-30047-9_31
Tornede, A., Gehring, L., Tornede, T., Wever, M., & Hüllermeier, E. (2023). Algorithm selection on a meta level. Machine learning, 112(4), 1253-1286. https://doi.org/10.1007/s10994-022-06161-4
Tornede, T., Tornede, A., Fehring, L., Gehring, L., Graf, H., Hanselle, J., Mohr, F., & Wever, M. (2023). PyExperimenter: Easily distribute experiments and track results. Journal of Open Source Software. https://doi.org/10.21105/joss.05149
Tornede, T., Tornede, A., Hanselle, J., Mohr, F., Wever, M., & Hüllermeier, E. (2023). Towards Green Automated Machine Learning: Status Quo and Future Directions. Journal of Artificial Intelligence Research, 77, 427-457. https://doi.org/10.1613/jair.1.14340
Wever, M., Özdogan, M., & Hüllermeier, E. (2023). Cooperative Co-Evolution for Ensembles of Nested Dichotomies for Multi-Class Classification. In GECCO 2023 - Proceedings of the 2023 Genetic and Evolutionary Computation Conference (S. 597-605). (Proceedings of the Genetic and Evolutionary Computation Conference). https://doi.org/10.1145/3583131.3590457

2022


Gevers, K., Tornede, A., Wever, M., Schöppner, V., & Hüllermeier, E. (2022). A comparison of heuristic, statistical, and machine learning methods for heated tool butt welding of two different materials. Welding in the world, 66(10), 2157-2170. https://doi.org/10.1007/s40194-022-01339-9
Hüllermeier, E., Wever, M., Loza Mencia, E., Fürnkranz, J., & Rapp, M. (2022). A flexible class of dependence-aware multi-label loss functions. Machine learning, 111(2), 713-737. https://doi.org/10.1007/s10994-021-06107-2
Schede, E., Brandt, J., Tornede, A., Wever, M., Bengs, V., Hüllermeier, E., & Tierney, K. (2022). A Survey of Methods for Automated Algorithm Configuration. Journal of Artificial Intelligence Research, 75, 425-487. https://doi.org/10.1613/jair.1.13676

2021


Hanselle, J., Tornede, A., Wever, M., & Hüllermeier, E. (2021). Algorithm Selection as Superset Learning: Constructing Algorithm Selectors from Imprecise Performance Data. In K. Karlapalem, H. Cheng, N. Ramakrishnan, R. K. Agrawal, P. K. Reddy, J. Srivastava, & T. Chakraborty (Hrsg.), Advances in Knowledge Discovery and Data Mining - 25th Pacific-Asia Conference, PAKDD 2021, Proceedings (S. 152-163). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12712 LNAI). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-75762-5_13, https://doi.org/10.1007/978-3-030-75762-5_13
Hüllermeier, E., Mohr, F., Tornede, A., & Wever, M. D. (2021). Automated Machine Learning, Bounded Rationality, and Rational Metareasoning. In ECML/PKDD workshop on Automating Data Science (ADS 2021) https://arxiv.org/abs/2109.04744
Merten, M.-L., Seemann, N., & Wever, M. D. (2021). Grammatikwandel digital-kulturwissenschaftlich erforscht: Mittelniederdeutscher Sprachausbau im interdisziplinären Zugriff. In Jahrbuch des Vereins für Niederdeutsche Sprachforschung: Jahrgang 2021 (1. Aufl., S. 124-146). (Jahrbuch des Vereins für Niederdeutsche Sprachforschung; Band 144). Wachholtz, Murmann Publishers.
Mohr, F., Wever, M., Tornede, A., & Hullermeier, E. (2021). Predicting Machine Learning Pipeline Runtimes in the Context of Automated Machine Learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3055-3066. Artikel 9347828. https://doi.org/10.1109/tpami.2021.3056950
Mohr, F., & Wever, M. (2021). Replacing the Ex-Def Baseline in AutoML by Naive AutoML. In Proceedings of the 8th ICML Workshop on Automated Machine Learning
Tornede, T., Tornede, A., Wever, M., Mohr, F., & Hüllermeier, E. (2021). AutoML for Predictive Maintenance: One Tool to RUL Them All. In J. Gama, S. Pashami, A. Bifet, M. Sayed-Mouchawe, H. Fröning, F. Pernkopf, G. Schiele, & M. Blott (Hrsg.), IoT Streams for Data-Driven Predictive Maintenance and IoT, Edge, and Mobile for Embedded Machine Learning: Second International Workshop, IoT Streams 2020, and First International Workshop, ITEM 2020, Co-located with ECML/PKDD 2020, Ghent, Belgium, September 14-18, 2020, Revised Selected Papers (1 Aufl., S. 106–118). (Communications in Computer and Information Science; Band 1325). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-66770-2_8
Tornede, T., Tornede, A., Wever, M., & Hüllermeier, E. (2021). Coevolution of remaining useful lifetime estimation pipelines for automated predictive maintenance. In GECCO 2021 - Proceedings of the 2021 Genetic and Evolutionary Computation Conference (S. 368-376). (ACM Conferences). Association for Computing Machinery, Inc. https://doi.org/10.1145/3449639.3459395
Wever, M., Tornede, A., Mohr, F., & Hullermeier, E. (2021). AutoML for Multi-Label Classification: Overview and Empirical Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3037-3054. Artikel 9321731. https://doi.org/10.1109/TPAMI.2021.3051276

2020


Hanselle, J., Tornede, A., Wever, M., & Hüllermeier, E. (2020). Hybrid ranking and regression for algorithm selection. In U. Schmid, D. Wolter, & F. Klügl (Hrsg.), KI 2020: Advances in Artificial Intelligence - 43rd German Conference on AI, Proceedings (S. 59-72). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12325 LNAI). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-58285-2_5
Heid, S., Wever, M., & Hüllermeier, E. (2020). Reliable Part-of-Speech Tagging of Historical Corpora through Set-Valued Prediction. Computing Research Repository (CoRR), abs/2008.01377. https://dblp.org/db/journals/corr/corr2008.html#abs-2008-01377
Tornede, A., Wever, M., & Hüllermeier, E. (2020). Extreme Algorithm Selection with Dyadic Feature Representation. In A. Appice, G. Tsoumakas, Y. Manolopoulos, & S. Matwin (Hrsg.), Discovery Science - 23rd International Conference, DS 2020, Proceedings (S. 309-324). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Band 12323 LNAI). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-61527-7_21
Tornede, A., Wever, M., Werner, S., Mohr, F., & Hüllermeier, E. (2020). Run2Survive: A Decision-theoretic Approach to Algorithm Selection based on Survival Analysis. In Proceedings of The 12th Asian Conference on Machine Learning (Band 129, S. 737-752). (Proceedings of Machine Learning Research). https://proceedings.mlr.press/v129/tornede20a.html