InstitutTeam
Marius Lindauer

Prof. Dr. rer. nat. Marius Lindauer

Prof. Dr. rer. nat. Marius Lindauer
Adresse
Appelstraße 9a
30167 Hannover
Gebäude
Raum
Prof. Dr. rer. nat. Marius Lindauer
Adresse
Appelstraße 9a
30167 Hannover
Gebäude
Raum

In recent years, AI achieved impressive results in different fields, incl. in computer vision, natural language processing and reinforcement learning. These breakthroughs show how AI will influence and change our daily lives, business and even research in many aspects. With the advent of deep learning and also traditional AI methods, such as AI planning, SAT solving or evolutionary algorithms, a multitude of different techniques are available these days. However, applying these techniques is challenging, and even experienced AI developers are faced with several difficult design decisions, making the development of new AI applications a tedious, error-prone and time-consuming task. Therefore, we develop new approaches to increase efficiency in AI application development by reducing the required expert knowledge, improving development time and reducing chances of error. We do this with democratization of AI and social responsibility in mind.

Research Interests

Actually, I'm interested in many topics related to AutoML, machine learning, AI and interdisciplinary applications of these. Here are some selected topics:

  • Green-AutoML
  • Human-centered AutoML
  • Dynamic Algorithm Configuration
  • Generalization of Reinforcement Learning
  • Applications to production or health/medicine

Curriculum Vitae

  • Working Experience

    since 2022
    Head of Institute of AI, Leibniz University Hannover

    since 2019
    Professor of Machine Learning, Leibniz University Hannover

    2017-2019
    Lecturer (i.e., "Akademischer Rat"), University of Freiburg

    2014-2017
    PostDoc, University of Freiburg

    2010-2014
    Phd Student, University of Potsdam

  • Education

    2010-2015
    Phd (Dr. rer. nat), University of Potsdam

    2008-2010
    Master of Science, Computer Science, University of Potsdam

    2005-2008
    Bachelor of Science, Computer Science, University of Potsdam

  • Selected Awards
    • 2022: ERC Starting Grant on ixAutoML
    • 2020: 3rd place(*) at the official leaderboard and 1st place at the warmstart friendly leaderboard at the BBO-Challenge at NeurIPS'20 (* after fixing a minor bug)
    • 2018: Winner of 2nd AutoML challenge::PAKDD2018 with aad_freibug and PoSH Auto-sklearn
    • 2016: Winner of ChaLearn AutoML challenge "AutoML 5" with aad_freibug and auto-sklearn
    • 2015: Winner of ICON Challenge on algorithm selection with AutoFolio (track: Par10)
    • 2013: Winner of Configurable SAT Solver challenge 2013 with the Potassco team and clasp (tracks: crafted and random)
    • 2012: Winner of SAT Challenge 2012 with the Potassco team and clasp (track: hard combinatorial)
    • 2011: Winner of Answer Set Programming Competition with the Potassco team and claspfolio (track: NP-Problems)
    • 2009: Leopold-von-Buch-Bachelor-Award (Best Bachelor in Natural Sciences 2009 at the University of Potsdam)
  • Memberships
  • Social Media

Publications


Zeige Ergebnisse 1 - 20 von 78
1 2 3 4 Last

2023


Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A-L., Deng, D., & Lindauer, M. (2023). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery.

doi.org/10.1002/widm.1484


2022


Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer, T., Lindauer, M., & Hutter, F. (Angenommen/Im Druck). Automated Dynamic Algorithm Configuration. Journal of Artificial Intelligence Research.

arxiv.org/abs/2205.13881

Benjamins, C., Eimer, T., Schubert, F., Mohan, A., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2022). Contextualize Me -- The Case for Context in Reinforcement Learning.

doi.org/10.48550/arXiv.2202.04500

Benjamins, C., Raponi, E., Jankovic, A., Blom, K. V. D., Santoni, M. L., Lindauer, M., & Doerr, C. (2022). PI is back! Switching Acquisition Functions in Bayesian Optimization. in 2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems

arxiv.org/abs/2211.01455

Benjamins, C., Jankovic, A., Raponi, E., Blom, K. V. D., Lindauer, M., & Doerr, C. (2022). Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis. in 6th Workshop on Meta-Learning at NeurIPS 2022

Bothmann, L., Strickroth, S., Casalicchio, G., Rügamer, D., Lindauer, M., Scheipl, F., & Bischl, B. (2022). Developing Open Source Educational Resources for Machine Learning and Data Science. in Teaching Machine Learning Workshop at ECML 2022

arxiv.org/abs/2107.14330

Deng, D., Karl, F., Hutter, F., Bischl, B., & Lindauer, M. (2022). Efficient Automated Deep Learning for Time Series Forecasting. in Proceedings of the European Conference on Machine Learning (ECML)

doi.org/10.48550/arXiv.2205.05511

Deng, D., & Lindauer, M. (2022). Searching in the Forest for Local Bayesian Optimization. in ECML/PKDD workshop on Meta-learning

arxiv.org/abs/2111.05834

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. T., & Hutter, F. (2022). Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. Journal of Machine Learning Research.

www.jmlr.org/papers/volume23/21-0992/21-0992.pdf

Hvarfner, C., Stoll, D., Souza, A. L. F., Lindauer, M., Hutter, F., & Nardi, L. (2022). $\pi$ BOAugmenting Acquisition Functions with User Beliefs for Bayesian Optimization. in Proceedings of the International conference on Learning Representation (ICLR)

doi.org/10.48550/arXiv.2204.11051

Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Sass, R., & Hutter, F. (2022). SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. Journal of Machine Learning Research.

arxiv.org/abs/2109.09831

Mallik, N., Hvarfner, C., Stoll, D., Janowski, M., Bergman, E., Lindauer, M. T., Nardi, L., & Hutter, F. (2022). PriorBand: HyperBand + Human Expert Knowledge. in 2022 NeurIPS Workshop on Meta Learning (MetaLearn)

openreview.net/forum

Mohan, A., Ruhkopf, T., & Lindauer, M. (2022). Towards Meta-learned Algorithm Selection using Implicit Fidelity Information. in ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML)

arxiv.org/abs/2206.03130

Moosbauer, J., Casalicchio, G., Lindauer, M., & Bischl, B. (2022). Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution.

doi.org/10.48550/arXiv.2206.05447

Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T., Zhang, B., Nguyen, V., Calandra, R., Faust, A., Hutter, F., & Lindauer, M. (2022). Automated Reinforcement Learning (AutoRL): A Survey and Open Problems. Journal of Artificial Intelligence Research.

arxiv.org/abs/2201.03916

Ruhkopf, T., Mohan, A., Deng, D., Tornede, A., Hutter, F., & Lindauer, M. (2022). MASIF: Meta-learned Algorithm Selection using Implicit Fidelity Information.

Sass, R., Bergman, E., Biedenkapp, A., Hutter, F., & Lindauer, M. (2022). DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning. in ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML)

arxiv.org/pdf/2206.03493v1.pdf

Schubert, F., Benjamins, C., Döhler, S., Rosenhahn, B., & Lindauer, M. (2022). POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning.

doi.org/10.48550/arXiv.2205.11357


2021


Benjamins, C., Eimer, T., Schubert, F., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2021). CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning. in Workshop on Ecological Theory of Reinforcement Learning, NeurIPS 2021

arxiv.org/abs/2110.02102

Biedenkapp, A., Rajan, R., Hutter, F., & Lindauer, M. (2021). TempoRL: Learning When to Act. in Proceedings of the international conference on machine learning (ICML)

arxiv.org/abs/2106.05262


Projects

  • Dynamic Algorithm Configuration
    Da die Konfigurationen während der Laufzeit in Abhängigkeit vom aktuellen Zustand des Algorithmus ausgewählt werden sollten, kann es als ein Problem des Reinforcement Learning (RL) betrachtet werden, bei dem ein Agent in jedem Zeitschritt die zu verwendende Konfiguration auf der Grundlage der Leistung im letzten Schritt und des aktuellen Zustands des Algorithmus auswählt. Dies ermöglicht uns einerseits den Einsatz leistungsfähiger RL-Methoden, andererseits bringt RL auch eine Reihe von Herausforderungen mit sich, wie Instabilität, Rauschen und Ineffizienz bei der Abtastung, die bei Anwendungen wie DAC angegangen werden müssen. Daher umfasst die Forschung zu DAC auch die Forschung zu zuverlässigem, interpretierbarem, allgemeinem und schnellem Reinforcement Learning.
    Leitung: Prof. Dr. Marius Lindauer
    Jahr: 2019
    Förderung: DFG
    Laufzeit: 2019-2023
  • Dynamic Algorithm Configuration
    As configurations should be chosen during runtime depending on the current algorithm state, it can be viewed as a reinforcement learning (RL) problem where at each timestep an agent selects the configuration to use based on the performance in the last step and the current state of the algorithm. This enables us to use powerful RL methods on one hand; on the other, RL also brings a set of challenges like instability, noise and sample inefficiency that need to be addressed in applications such as DAC. Therefore research on DAC also includes research on reliable, interpretable, general and fast reinforcement learning.
    Leitung: Prof. Dr. Marius Lindauer
    Jahr: 2019
    Förderung: DFG
    Laufzeit: 2019-2023
  • CoyPu: Cognitive Economy Intelligence Plattform für die Resilienz wirtschaftlicher Ökosysteme
    Naturkatastrophen, Pandemien, Finanzkrisen, politische Krisen und Angebotsknappeheiten oder Nachfrageschocks propagieren sich durch offensichtliche und latente Handelsbeziehungen durch das globale ökonomische System. Dies ist eine Konsequenz der kontinuierlichen Globalisierung mit der einhergehenden Arbeitsteilung. Ziel dieses Projektes ist es diese Verbindungen offenzulegen und kaskadierende Risiken vorherzusagen um damit Unternehmen die Möglichkeit einzuräumen vorausschauend agieren zu können.
    Leitung: Prof. Marius Lindauer and Prof. Maria Esther-Vidal (L3S/LUH)
    Team: InfAI, DATEV eg., eccenca GmbH, Implisense GmbH, Deutsches Institut für Wirtschaftsforschung, Leibniz Informationszentrum Technik und Naturwissenschaften, Hamburger Informatik Technologie-Center e.V., Selbstregulierung Informationswirtschaft e.V., Infineo
    Jahr: 2021
    Förderung: Innovationswettbewerb Künstliche Intelligenz (BMWK)
    Laufzeit: 2021-2024
  • Leibniz AI Academy
    The Leibniz AI Academy aims to develop and establish a trans-curricular and interdisciplinary micro-degree program at the Leibniz Universität Hannover (LUH), in which students from different courses of study acquire competencies in the field of Artificial Intelligence
    Leitung: Prof. Dr. Marius Lindauer, Prof. Dr. Ralph Ewert, Prof. Dr. Johannes Krugel
    Jahr: 2021
    Förderung: Bundesministerium für Bildung und Forschung (BMBF)
    Laufzeit: 2021 - 2024
    Logo of Leibniz AI academy Logo of Leibniz AI academy
  • ERC Starting Grant: Interactive and Explainable Human-Centered AutoML
    Trust and interactivity are key factors in the future development and use of automated machine learning (AutoML), supporting developers and researchers in determining powerful task-specific machine learning pipelines, including pre-processing, predictive algorithm, their hyperparameters and--if applicable--the architecture design of deep neural networks. Although AutoML is ready for its prime time after it achieved impressive results in several machine learning (ML) applications and its efficiency improved by several orders of magnitudes in recent years, democratization of machine learning via AutoML is still not achieved. In contrast to previously purely automation-centered approaches, ixAutoML is designed with human users at its heart in several stages. First of all, the foundation of trustful use of AutoML will be based on explanations of its results and processes. Therefore, we aim for: (i) Explaining static effects of design decisions in ML pipelines optimized by state-of-the-art AutoML systems. (ii) Explaining dynamic AutoML policies for temporal aspects of dynamically adapted hyperparameters while ML models are trained. These explanations will be the base for allowing interactions, bringing the best of two worlds together: human intuition and generalization capabilities for complex systems, and efficiency of systematic optimization approaches for AutoML. Concretely, we aim for: (iii) Enabling interactions between humans and AutoML by taking human's latent knowledge into account and learning when to interact. (iv) Building first ixAutoML prototypes and showing its efficiency in the context of Industry 4.0. Perfectly aligned with the EU's AI strategy and recent efforts on interpretability in the ML community, we strongly believe that this timely human-centered ixAutoML will have a substantial impact on the democratization of machine learning.
    Leitung: Prof. Dr. Marius Lindauer
    Team: AutoML
    Jahr: 2022
    Förderung: EU
    Laufzeit: 2022-2027
  • KISSKI: AI Service Center
    The central approach for the KISSKI project is the research on AI methods and their provision with the goal of enabling a highly available AI service center for critical and sensitive infrastructures with a focus on the fields of medicine and energy. Due to their relevance to society as a whole, medicine and the energy industry are among the future fields of application-oriented AI research in Germany. Beyond the technological developments, artificial intelligence (AI) has the potential to make a significant contribution to social progress. This is particularly true in areas where digitization processes are increasingly gaining ground and complexity is high. For both medicine and the energy industry, the pressure to innovate, but also the potential, is immense due to the availability of more and more distributed information based on a multitude of new sensors and actuators. The increasing complexity of the tasks as well as the availability of very large data sets offer a high potential for the application of AI methods in both topics.
    Leitung: Prof. Dr. Marius Lindauer
    Team: AutoML
    Jahr: 2022
    Förderung: BMBF
    Laufzeit: 2022-2025