Zeige Ergebnisse 1 - 42 von 277
2024
Alshomary, M., Lange, F., Booshehri, M., Sengupta, M., Cimiano, P., & Wachsmuth, H. (2024). Modeling the Quality of Dialogical Explanations. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Hrsg.), 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings (S. 11523-11536). (2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings). European Language Resources Association (ELRA). https://doi.org/10.48550/arXiv.2403.00662
Becktepe, J., Dierkes, J., Benjamins, C., Mohan, A., Salinas, D., Rajan, R., Hutter, F., Hoos, H., Lindauer, M., & Eimer, T. (2024). ARLBench: Flexible and Efficient Benchmarking for Hyperparameter Optimization in Reinforcement Learning. In 17th European Workshop on Reinforcement Learning (EWRL 2024) Vorabveröffentlichung online.
Benjamins, C., Cenikj, G., Nikolikj, A., Mohan, A., Eftimov, T., & Lindauer, M. (2024). Instance Selection for Dynamic Algorithm Configuration with Reinforcement Learning: Improving Generalization. In Genetic and Evolutionary Computation Conference (GECCO) Association for Computing Machinery Special Interest Group on Genetic and Evolutionary Computation (SIGEVO). Vorabveröffentlichung online.
Bergman, E., Feurer, M., Bahram, A., Rezaei, A., Purucker, L., Segel, S., Lindauer, M., & Eggensperger, K. (2024). AMLTK: A Modular AutoML Toolkit in Python. The Journal of Open Source Software, 9(100), Artikel 6367. https://doi.org/10.21105/joss.06367
Chen, W. F., Alshomary, M., Stahl, M., Al Khatib, K., Stein, B., & Wachsmuth, H. (2024). Reference-guided Style-Consistent Content Transfer. In N. Calzolari, M.-Y. Kan, V. Hoste, A. Lenci, S. Sakti, & N. Xue (Hrsg.), 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation, LREC-COLING 2024 - Main Conference Proceedings (S. 13754-13768). European Language Resources Association (ELRA).
Deng, D., & Lindauer, M. (2024). Optimizing Time Series Forecasting Architectures: A Hierarchical Neural Architecture Search Approach. (ArXiv). Vorabveröffentlichung online. https://arxiv.org/abs/2406.05088
Eimer, T., Hutter, F., Lindauer, M., & Biedenkapp, A. (2024). Verfahren zum Trainieren eines Algorithmus des maschinellen Lernens durch ein bestärkendes Lernverfahren. (Patent Nr. DE102022210480A1). Deutsches Patent- und Markenamt (DPMA). https://worldwide.espacenet.com/patent/search/family/090246319/publication/DE102022210480A1?q=pn%3DDE102022210480A1
Faggioli, G., Dietz, L., Clarke, C. L. A., Demartini, G., Hagen, M., Hauff, C., Kando, N., Kanoulas, E., Potthast, M., Stein, B., & Wachsmuth, H. (2024). Who Determines What Is Relevant? Humans or AI? Why Not Both? A spectrum of human–artificial intelligence collaboration in assessing relevance. Communications of the ACM, 67(4), 31-34. https://doi.org/10.1145/3624730
Giovanelli, J., Tornede, A., Tornede, T., & Lindauer, M. (2024). Interactive Hyperparameter Optimization in Multi-Objective Problems via Preference Learning. In M. Wooldridge, J. Dy, & S. Natarajan (Hrsg.), Proceedings of the 38th conference on AAAI (S. 12172-12180). (Proceedings of the AAAI Conference on Artificial Intelligence; Band 38, Nr. 11). https://doi.org/10.48550/arXiv.2309.03581, https://doi.org/10.1609/aaai.v38i11.29106
Hennig, L., Tornede, T., & Lindauer, M. (2024). Towards Leveraging AutoML for Sustainable Deep Learning: A Multi-Objective HPO Approach on Deep Shift Neural Networks. In 5th Workshop on practical ML for limited/low resource settings Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2404.01965
Lindauer, M., Karl, F., Klier, A., Moosbauer, J., Tornede, A., Müller, A., Hutter, F., Feurer, M., & Bischl, B. (2024). Position Paper: A Call to Action for a Human-Centered AutoML Paradigm. In Proceedings of the international conference on machine learning Vorabveröffentlichung online.
Mohan, A., Zhang, A., & Lindauer, M. (2024). Structure in Deep Reinforcement Learning: A Survey and Open Problems. Journal of Artificial Intelligence Research. Vorabveröffentlichung online. https://arxiv.org/abs/2306.16021
Mohan, A., & Lindauer, M. (Angenommen/im Druck). Towards Enhancing Predictive Representations using Relational Structure in Reinforcement Learning. In The 17th European Workshop on Reinforcement Learning (EWRL 2024)
Neutatz, F., Lindauer, M., & Abedjan, Z. (2024). AutoML in Heavily Constrained Applications. VLDB Journal, 33(4), 957–979. https://doi.org/10.48550/arXiv.2306.16913, https://doi.org/10.1007/s00778-023-00820-1
Neutatz, F., Lindauer, M., & Abedjan, Z. (Angenommen/im Druck). [Experiments & Analysis] How Green is AutoML for Tabular Data? In Proceedings of EDBT 2025
Sengupta, M., El Baff, R., Alshomary, M., & Wachsmuth, H. (2024). Analyzing the Use of Metaphors in News Editorials for Political Framing. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (S. 3621–3631). Association for Computational Linguistics (ACL).
Spliethöver, M., Menon, S. N., & Wachsmuth, H. (2024). Disentangling Dialect from Social Bias via Multitask Learning to Improve Fairness. In L.-W. Ku, A. Martins, & V. Srikumar (Hrsg.), Findings of the Association for Computational Linguistics ACL 2024 (S. 9294-9313). (Proceedings of the Annual Meeting of the Association for Computational Linguistics). https://doi.org/10.18653/v1/2024.findings-acl.553
Stahl, M., Michel, N., Kilsbach, S., Schmidtke, J., Rezat, S., & Wachsmuth, H. (2024). A School Student Essay Corpus for Analyzing Interactions of Argumentative Structure and Quality. In K. Duh, H. Gomez, & S. Bethard (Hrsg.), Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (Volume 1: Long Papers) (S. 2661–2674). (Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL 2024; Band 1).
Stahl, M., Biermann, L., Nehring, A., & Wachsmuth, H. (2024). Exploring LLM Prompting Strategies for Joint Essay Scoring and Feedback Generation. In Proceedings of the 19th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2024) (S. 283–298)
Theodorakopoulos, D., Stahl, F., & Lindauer, M. (Angenommen/im Druck). Hyperparameter Importance Analysis for Multi-Objective AutoML. In Proceedings of the european conference on AI (ECAI)
Tornede, A., Deng, D., Eimer, T., Giovanelli, J., Mohan, A., Ruhkopf, T., Segel, S., Theodorakopoulos, D., Tornede, T., Wachsmuth, H., & Lindauer, M. (2024). AutoML in the Age of Large Language Models: Current Challenges, Future Opportunities and Risks. Transactions on Machine Learning Research. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2306.08107
Zöller, M., Lindauer, M., & Huber, M. (Angenommen/im Druck). auto-sktime: Automated Time Series Forecasting. In Proceedings of the 18TH Learning and Intelligent Optimization Conference (LION) https://arxiv.org/abs/2312.08528
LIGO Scientific, Virgo, and KAGRA Collaborations, Brinkmann, M., Carlassara, M., Chakraborty, P., Danzmann, K., Heurs, M., Johny, N., Junker, J., Knust, N., Lehmann, J., Lück, H., Matiushechkina, M., Nery, M., Schulte, B. W., Vahlbruch, H., Wilken, D., Willke, B., Wu, D. S., Affeldt, C., ... Weßels, P. (2024). Ultralight vector dark matter search using data from the KAGRA O3GK run. Physical Review D, 110(4), 1-21. Artikel 042001. https://doi.org/10.1103/PhysRevD.110.042001
2023
Alshomary, M., & Wachsmuth, H. (2023). Conclusion-based Counter-Argument Generation. In EACL 2023 - 17th Conference of the European Chapter of the Association for Computational Linguistics, Proceedings of the Conference (S. 957-967). Association for Computational Linguistics (ACL). https://doi.org/10.48550/arXiv.2301.09911
Bäumer, F., Chen, W. F., Geierhos, M., Kersting, J., & Wachsmuth, H. (2023). Dialogue-Based Requirement Compensation and Style-Adjusted Data-To-Text Generation. In On-The-Fly Computing : Individualized IT-Services in dynamic markets (S. 65-84) https://doi.org/10.5281/zenodo.8068456
Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2023). Contextualize Me – The Case for Context in Reinforcement Learning. Transactions on Machine Learning Research, 2023(6). Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2202.04500
Benjamins, C., Eimer, T., Schubert, F. G., Mohan, A., Döhler, S., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2023). Extended Abstract: Contextualize Me -- The Case for Context in Reinforcement Learning. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) Vorabveröffentlichung online. https://openreview.net/forum?id=DJgHzXv61b
Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., & Lindauer, M. (Angenommen/im Druck). Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. In AutoML Conference 2023 PMLR.
Benjamins, C., Raponi, E., Jankovic, A., Doerr, C., & Lindauer, M. (Angenommen/im Druck). Towards Self-Adjusting Weighted Expected Improvement for Bayesian Optimization. In GECCO '23: Proceedings of the Genetic and Evolutionary Computation Conference Companion Association for Computing Machinery Special Interest Group on Genetic and Evolutionary Computation (SIGEVO).
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A.-L., Deng, D., & Lindauer, M. (2023). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), Artikel e1484. https://doi.org/10.1002/widm.1484
Denkena, B., Dittrich, M.-A., Noske, H., Lange, D., Benjamins, C., & Lindauer, M. (2023). Application of machine learning for fleet-based condition monitoring of ball screw drives in machine tools. The international journal of advanced
manufacturing technology, 127(3-4), 1143-1164. https://doi.org/10.1007/s00170-023-11524-9
Eimer, T., Lindauer, M., & Raileanu, R. (2023). Extended Abstract: Hyperparameters in Reinforcement Learning and How To Tune Them. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) Vorabveröffentlichung online. https://openreview.net/forum?id=N3IDYxLxgtW
Eimer, T., Lindauer, M., & Raileanu, R. (2023). Hyperparameters in Reinforcement Learning and How to Tune Them. In ICML'23: Proceedings of the 40th International Conference on Machine Learning (S. 9104–9149). Artikel 366 https://doi.org/10.48550/arXiv.2306.01324, https://doi.org/10.5555/3618408.3618774
Faggioli, G., Clarke, C. L. A., Demartini, G., Hagen, M., Hauff, C., Kando, N., Kanoulas, E., Potthast, M., Stein, B., Wachsmuth, H., & Dietz, L. (2023). Perspectives on Large Language Models for Relevance Judgment. In ICTIR '23: Proceedings of the 2023 ACM SIGIR International Conference on Theory of Information Retrieval (S. 39-50). Association for Computing Machinery, Inc. https://doi.org/10.48550/arXiv.2304.09161, https://doi.org/10.1145/3578337.3605136
Haake, C.-J., Auf Der Heide, F. M., Platzner, M., Wachsmuth, H., & Wehrheim, H. (2023). On-The-Fly Computing: Individualized IT-Services in dynamic markets. (Verlagsschriftenreihe des Heinz Nixdorf Instituts; Band 412). Verlagschriftenreihe des Heinz Nixdorf Instituts. https://doi.org/10.17619/UNIPB/1-1797
Hanselle, J., Hüllermeier, E., Mohr, F., Ngomo, A. C. N., Sherif, M. A., Tornede, A., & Wever, M. D. (2023). Configuration and Evaluation. In On-The-Fly Computing -- Individualized IT-services in dynamic markets https://doi.org/10.5281/zenodo.8068466
Kiesel, J., Alshomary, M., Mirzakhmedova, N., Heinrich, M., Handke, N., Wachsmuth, H., & Stein, B. (2023). SemEval-2023 Task 4: ValueEval: Identification of Human Values Behind Arguments. In A. K. Ojha, A. S. Doğruöz, G. Da San Martino, H. T. Madabushi, R. Kumar, & E. Sartori (Hrsg.), Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023) (S. 2287-2303). Association for Computational Linguistics (ACL). https://doi.org/10.18653/V1/2023.SEMEVAL-1.313
Lapesa, G., Vecchi, E. M., Villata, S., & Wachsmuth, H. (2023). Mining, Assessing, and Improving Arguments in NLP and the Social Sciences. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics: Tutorial Abstracts Association for Computational Linguistics (ACL). https://doi.org/10.18653/v1/2023.eacl-tutorials.1
Loni, M., Mohan, A., Asadi, M., & Lindauer, M. (Angenommen/im Druck). Learning Activation Functions for Sparse Neural Networks. In Second International Conference on Automated Machine Learning PMLR. https://arxiv.org/abs/2305.10964
Mallik, N., Bergman, E., Hvarfner, C., Stoll, D., Janowski, M., Lindauer, M., Nardi, L., & Hutter, F. (2023). PriorBand: Practical Hyperparameter Optimization in the Age of Deep Learning. In Proceedings of the international Conference on Neural Information Processing Systems (NeurIPS) Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2306.12370
Mohan, A., Zhang, A., & Lindauer, M. (Angenommen/im Druck). A Patterns Framework for Incorporating Structure in Deep Reinforcement Learning. In The 16th European Workshop on Reinforcement Learning (EWRL 2023) https://openreview.net/forum?id=KkKWsPLlAx
Mohan, A., Benjamins, C., Wienecke, K., Dockhorn, A., & Lindauer, M. (2023). AutoRL Hyperparameter Landscapes. In Second International Conference on Automated Machine Learning PMLR. Vorabveröffentlichung online. https://doi.org/10.48550/arXiv.2304.02396