Key Point Analysis via Contrastive Learning and Extractive Argument Summarization
- verfasst von
- Milad Alshomary, Timon Gurke, Shahbaz Syed, Philipp Heinisch, Maximilian Spliethöver, Philipp Cimiano, Martin Potthast, Henning Wachsmuth
- Abstract
Key point analysis is the task of extracting a set of concise and high-level statements from a given collection of arguments, representing the gist of these arguments. This paper presents our proposed approach to the Key Point Analysis shared task, collocated with the 8th Workshop on Argument Mining. The approach integrates two complementary components. One component employs contrastive learning via a siamese neural network for matching arguments to key points; the other is a graph-based extractive summarization model for generating key points. In both automatic and manual evaluation, our approach was ranked best among all submissions to the shared task.
- Externe Organisation(en)
-
Universität Paderborn
Universität Leipzig
Universität Bielefeld
- Typ
- Aufsatz in Konferenzband
- Seiten
- 184-189
- Anzahl der Seiten
- 6
- Publikationsdatum
- 2021
- Publikationsstatus
- Veröffentlicht
- Peer-reviewed
- Ja
- ASJC Scopus Sachgebiete
- Sprache und Linguistik, Software, Linguistik und Sprache
- Elektronische Version(en)
-
https://aclanthology.org/2021.argmining-1.19.pdf (Zugang:
Offen)