Details zu Publikationen

Automated Machine Learning for Remaining Useful Life Predictions

verfasst von
Marc Zoeller, Fabian Mauthe, Peter Zeiler, Marius Lindauer, Marco Huber
Abstract

Being able to predict the remaining useful life (RUL) of an engineering system is an important task in prognostics and health management. Recently, data-driven approaches to RUL predictions are becoming prevalent over model-based approaches since no underlying physical knowledge of the engineering system is required. Yet, this just replaces required expertise of the underlying physics with machine learning (ML) expertise, which is often also not available. Automated machine learning (AutoML) promises to build end-to-end ML pipelines automatically enabling domain experts without ML expertise to create their own models. This paper introduces AutoRUL, an AutoML-driven end-to-end approach for automatic RUL predictions. AutoRUL combines fine-tuned standard regression methods to an ensemble with high predictive power. By evaluating the proposed method on eight real-world and synthetic datasets against state-of-the-art hand-crafted models, we show that AutoML provides a viable alternative to hand-crafted data-driven RUL predictions. Consequently, creating RUL predictions can be made more accessible for domain experts using AutoML by eliminating ML expertise from data-driven model construction.

Organisationseinheit(en)
Fachgebiet Maschinelles Lernen
Externe Organisation(en)
USU Software AG
Hochschule Esslingen
Universität Stuttgart
Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA)
Typ
Aufsatz in Konferenzband
Seiten
2907-2912
Anzahl der Seiten
6
Publikationsdatum
01.10.2023
Publikationsstatus
Veröffentlicht
Peer-reviewed
Ja
ASJC Scopus Sachgebiete
Elektrotechnik und Elektronik, Steuerungs- und Systemtechnik, Mensch-Maschine-Interaktion
Elektronische Version(en)
https://doi.org/10.1109/SMC53992.2023.10394031 (Zugang: Geschlossen)
https://doi.org/10.48550/arXiv.2306.12215 (Zugang: Offen)