2023
Bischl, B., Binder, M., Lang, M., Pielok, T., Richter, J., Coors, S., Thomas, J., Ullmann, T., Becker, M., Boulesteix, A-L., Deng, D., & Lindauer, M. (2023). Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 13(2), [e1484].
2022
Adriaensen, S., Biedenkapp, A., Shala, G., Awad, N., Eimer, T., Lindauer, M., & Hutter, F. (Accepted/In press). Automated Dynamic Algorithm Configuration. Journal of Artificial Intelligence Research.
Benjamins, C., Eimer, T., Schubert, F., Mohan, A., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2022). Contextualize Me -- The Case for Context in Reinforcement Learning.
Benjamins, C., Raponi, E., Jankovic, A., Blom, K. V. D., Santoni, M. L., Lindauer, M., & Doerr, C. (2022). PI is back! Switching Acquisition Functions in Bayesian Optimization. In 2022 NeurIPS Workshop on Gaussian Processes, Spatiotemporal Modeling, and Decision-making Systems
Benjamins, C., Jankovic, A., Raponi, E., Blom, K. V. D., Lindauer, M., & Doerr, C. (2022). Towards Automated Design of Bayesian Optimization via Exploratory Landscape Analysis. In 6th Workshop on Meta-Learning at NeurIPS 2022
Bothmann, L., Strickroth, S., Casalicchio, G., Rügamer, D., Lindauer, M., Scheipl, F., & Bischl, B. (2022). Developing Open Source Educational Resources for Machine Learning and Data Science. In Teaching Machine Learning Workshop at ECML 2022
Deng, D., Karl, F., Hutter, F., Bischl, B., & Lindauer, M. (2022). Efficient Automated Deep Learning for Time Series Forecasting. In Proceedings of the European Conference on Machine Learning (ECML)
Deng, D., & Lindauer, M. (2022). Searching in the Forest for Local Bayesian Optimization. In ECML/PKDD workshop on Meta-learning
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. T., & Hutter, F. (2022). Auto-Sklearn 2.0: Hands-free AutoML via Meta-Learning. Journal of Machine Learning Research.
Hvarfner, C., Stoll, D., Souza, A. L. F., Lindauer, M., Hutter, F., & Nardi, L. (Accepted/In press). π BO: Augmenting Acquisition Functions with User Beliefs for Bayesian Optimization. In Proceedings of the International conference on Learning Representation (ICLR)
Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Deng, D., Benjamins, C., Sass, R., & Hutter, F. (2022). SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization. Journal of Machine Learning Research.
Mallik, N., Hvarfner, C., Stoll, D., Janowski, M., Bergman, E., Lindauer, M. T., Nardi, L., & Hutter, F. (2022). PriorBand: HyperBand + Human Expert Knowledge. In 2022 NeurIPS Workshop on Meta Learning (MetaLearn)
Mohan, A., Ruhkopf, T., & Lindauer, M. (2022). Towards Meta-learned Algorithm Selection using Implicit Fidelity Information. In ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML)
Moosbauer, J., Casalicchio, G., Lindauer, M., & Bischl, B. (2022). Enhancing Explainability of Hyperparameter Optimization via Bayesian Algorithm Execution.
Parker-Holder, J., Rajan, R., Song, X., Biedenkapp, A., Miao, Y., Eimer, T., Zhang, B., Nguyen, V., Calandra, R., Faust, A., Hutter, F., & Lindauer, M. (2022). Automated Reinforcement Learning (AutoRL): A Survey and Open Problems. Journal of Artificial Intelligence Research.
Ruhkopf, T., Mohan, A., Deng, D., Tornede, A., Hutter, F., & Lindauer, M. (2022). MASIF: Meta-learned Algorithm Selection using Implicit Fidelity Information.
Sass, R., Bergman, E., Biedenkapp, A., Hutter, F., & Lindauer, M. (2022). DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning. In ICML Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML)
Schubert, F., Benjamins, C., Döhler, S., Rosenhahn, B., & Lindauer, M. (2022). POLTER: Policy Trajectory Ensemble Regularization for Unsupervised Reinforcement Learning.
2021
Benjamins, C., Eimer, T., Schubert, F., Biedenkapp, A., Rosenhahn, B., Hutter, F., & Lindauer, M. (2021). CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning. In Workshop on Ecological Theory of Reinforcement Learning, NeurIPS 2021
Biedenkapp, A., Rajan, R., Hutter, F., & Lindauer, M. (2021). TempoRL: Learning When to Act. In Proceedings of the international conference on machine learning (ICML)
Eggensperger, K., Müller, P., Mallik, N., Feurer, M., Sass, R., Awad, N., Lindauer, M., & Hutter, F. (2021). HPOBench: A Collection of Reproducible Multi-Fidelity Benchmark Problems for HPO. In Proceedings of the international conference on Neural Information Processing Systems (NeurIPS) (Datasets and Benchmarks Track)
Eimer, T., Biedenkapp, A., Reimer, M., Adriaensen, S., Hutter, F., & Lindauer, M. T. (2021). DACBench: A Benchmark Library for Dynamic Algorithm Configuration. In Proceedings of the international joint conference on AI (IJCAI) (pp. 1668-1674)
Eimer, T., Benjamins, C., & Lindauer, M. T. (2021). Hyperparameters in Contextual RL are Highly Situational. In International Workshop on Ecological Theory of RL (at NeurIPS)
Eimer, T., Biedenkapp, A., Hutter, F., & Lindauer, M. (2021). Self-Paced Context Evaluation for Contextual Reinforcement Learning. In Proceedings of the international conference on machine learning (ICML)
Guerrero-Viu, J., Hauns, S., Izquierdo, S., Miotto, G., Schrodi, S., Biedenkapp, A., Elsken, T., Deng, D., Lindauer, M., & Hutter, F. (2021). Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization. In ICML 2021 Workshop AutoML
Kadra, A., Lindauer, M., Hutter, F., & Grabocka, J. (2021). Well-tuned Simple Nets Excel on Tabular Datasets. In Proceedings of the international conference on Advances in Neural Information Processing Systems (NeurIPS 2021)
Liu, Z., Pavao, A., Xu, Z., Escalera, S., Ferreira, F., Guyon, I., Hong, S., Hutter, F., Ji, R., Junior, J. C. S. J., Li, G., Lindauer, M., Luo, Z., Madadi, M., Nierhoff, T., Niu, K., Pan, C., Stoll, D., Treguer, S., ... Zhang, Y. (2021). Winning Solutions and Post-Challenge Analyses of the ChaLearn AutoDL Challenge 2019. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3108-3125. [9415128].
doi.org/10.48550/arXiv.2201.03801
,Moosbauer, J., Herbinger, J., Casalicchio, G., Lindauer, M., & Bischl, B. (2021). Explaining Hyperparameter Optimization via Partial Dependence Plots. In Proceedings of the international conference on Neural Information Processing Systems (NeurIPS)
Schubert, F., Eimer, T., Rosenhahn, B., & Lindauer, M. (2021). Automatic Risk Adaptation in Distributional Reinforcement Learning.
Souza, A., Nardi, L., Oliveira, L. B., Olukotun, K., Lindauer, M., & Hutter, F. (2021). Bayesian Optimization with a Prior for the Optimum. In N. Oliver, F. Pérez-Cruz, S. Kramer, J. Read, & J. A. Lozano (Eds.), Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021, Proceedings (Vol. 3, pp. 265-296). (Lecture Notes in Artificial Intelligence (Subseries of Lecture Notes in Computer Science); Vol. 12977). Springer Nature Switzerland AG.
Souza, A., Nardi, L., Oliveira, L. B., Olukotun, K., Lindauer, M., & Hutter, F. (2021). Prior-guided Bayesian Optimization. In Machine Learning and Knowledge Discovery in Databases. Research Track: European Conference, ECML PKDD 2021
Speck, D., Biedenkapp, A., Hutter, F., Mattmüller, R., & Lindauer, M. (2021). Learning Heuristic Selection with Dynamic Algorithm Configuration. In Proceedings of the International Conference on Automated Planning and Scheduling (ICAPS)
Stürenburg, L., Denkena, B., Lindauer, M., & Wichmann, M. (2021). Maschinelles Lernen in der Prozessplanung. VDI-Z Integrierte Produktion, 163(11-12), 26-29.
Zimmer, L., Lindauer, M., & Hutter, F. (2021). Auto-PyTorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(9), 3079-3090. [9382913].
2020
Awad, N., Shala, G., Deng, D., Mallik, N., Feurer, M., Eggensperger, K., Biedenkapp, A., Vermetten, D., Wang, H., Doerr, C., Lindauer, M., & Hutter, F. (2020). Squirrel: A Switching Hyperparameter Optimizer.
Biedenkapp, A., Bozkurt, H. F., Eimer, T., Hutter, F., & Lindauer, M. T. (2020). Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework. In G. De Giacomo, A. Catala, B. Dilkina, M. Milano, S. Barro, A. Bugarin, & J. Lang (Eds.), ECAI 2020 - 24th European Conference on Artificial Intelligence (pp. 427-434). (Frontiers in Artificial Intelligence and Applications; Vol. 325).
Biedenkapp, A., Rajan, R., Hutter, F., & Lindauer, M. T. (2020). Towards TempoRL Learning When to Act. Paper presented at ICML 2020 Inductive biases, invariances and generalization in RL workshop.
Denkena, B., Dittrich, M-A., Lindauer, M. T., Mainka, J. M., & Stürenburg, L. K. (2020). Using AutoML to Optimize Shape Error Prediction in Milling Processes. SSRN Electronic Journal, 2020.
Eggensperger, K., Haase, K., Müller, P., Lindauer, M., & Hutter, F. (2020). Neural Model-based Optimization with Right-Censored Observations.
Eimer, T., Biedenkapp, A., Hutter, F., & Lindauer, M. T. (2020). Towards Self-Paced Context Evaluation for Contextual Reinforcement Learning.
Lindauer, M., & Hutter, F. (2020). Best Practices for Scientific Research on Neural Architecture Search. Journal of Machine Learning Research, 21.
Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., & Hutter, F. (2020). Learning Step-Size Adaptation in CMA-ES. In T. Bäck, M. Preuss, A. Deutz, M. Emmerich, H. Wang, C. Doerr, & H. Trautmann (Eds.), Parallel Problem Solving from Nature – PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I (pp. 691-706). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12269). Springer.