Publications of the Institute

Showing results 85 - 126 out of 131

2020


Lindauer, M., & Hutter, F. (2020). Best Practices for Scientific Research on Neural Architecture Search. Journal of Machine Learning Research, 21. https://arxiv.org/abs/1909.02453
Lindauer, M., Hutter, F., Biedenkapp, A., & Bozkurt, F. (2020). VERFAHREN, VORRICHTUNG UND COMPUTERPROGRAMM ZUM EINSTELLEN EINES HYPERPARAMETERS. (Patent No. EP3748551).
Shala, G., Biedenkapp, A., Awad, N., Adriaensen, S., Lindauer, M., & Hutter, F. (2020). Learning Step-Size Adaptation in CMA-ES. In T. Bäck, M. Preuss, A. Deutz, M. Emmerich, H. Wang, C. Doerr, & H. Trautmann (Eds.), Parallel Problem Solving from Nature – PPSN XVI: 16th International Conference, PPSN 2020, Leiden, The Netherlands, September 5-9, 2020, Proceedings, Part I (pp. 691-706). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 12269). Springer. https://doi.org/10.1007/978-3-030-58112-1_48

2019


Biedenkapp, A., Bozkurt, H. F., Hutter, F., & Lindauer, M. (2019). Towards White-box Benchmarks for Algorithm Control. Advance online publication. https://arxiv.org/abs/1906.07644
Eggensperger, K., Lindauer, M., & Hutter, F. (2019). Pitfalls and Best Practices in Algorithm Configuration. Journal of Artificial Intelligence Research, 64, 861-893. https://doi.org/10.1613/jair.1.11420
Fuks, L., Awad, N., Hutter, F., & Lindauer, M. (2019). An evolution strategy with progressive episode lengths for playing games. In S. Kraus (Ed.), Proceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019 (pp. 1234-1240). (IJCAI International Joint Conference on Artificial Intelligence). AAAI Press/International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2019/172
Lindauer, M., Eggensperger, K., Feurer, M., Biedenkapp, A., Marben, J., Müller, P., & Hutter, F. (2019). BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters. Advance online publication. https://arxiv.org/pdf/1908.06756
Lindauer, M., van Rijn, J. N., & Kotthoff, L. (2019). The algorithm selection competitions 2015 and 2017. Artificial intelligence, 272, 86-100. https://doi.org/10.1016/j.artint.2018.10.004
Lindauer, M., Feurer, M., Eggensperger, K., Biedenkapp, A., & Hutter, F. (2019). Towards Assessing the Impact of Bayesian Optimization’s Own Hyperparameters. In DSO Workshop at IJCAI Advance online publication. https://arxiv.org/abs/1908.06674
Mendoza, H., Klein, A., Feurer, M., Springenberg, J. T., Urban, M., Burkart, M., Dippel, M., Lindauer, M. T., & Hutter, F. (2019). Towards Automatically-Tuned Deep Neural Networks. In Automated Machine Learning https://doi.org/10.1007/978-3-030-05318-5_7

2018


Biedenkapp, A., Marben, J., Lindauer, M., & Hutter, F. (2018). CAVE: Configuration Assessment, Visualization and Evaluation. In P. M. Pardalos, R. Battiti, M. Brunato, & I. Kotsireas (Eds.), Learning and Intelligent Optimization (pp. 115-130). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11353 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-030-05348-2_10
Eggensperger, K., Lindauer, M., Hoos, H. H., Hutter, F., & Leyton-Brown, K. (2018). Efficient benchmarking of algorithm configurators via model-based surrogates. Machine learning, 107(1), 15-41. https://doi.org/10.1007/s10994-017-5683-z
Eggensperger, K., Lindauer, M., & Hutter, F. (2018). Neural Networks for Predicting Algorithm Runtime Distributions. In J. Lang (Ed.), Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (pp. 1442-1448). AAAI Press/International Joint Conferences on Artificial Intelligence. https://doi.org/10.24963/ijcai.2018/200
Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M. T., & Hutter, F. (2018). Practical Automated Machine Learning for the AutoML Challenge 2018. https://www.tnt.uni-hannover.de/papers/data/1407/18-AUTOML-AutoChallenge.pdf
Lindauer, M., Hoos, H., Hutter, F., & Leyton-Brown, K. (2018). Selection and Configuration of Parallel Portfolios. In Handbook of Parallel Constraint Reasoning (pp. 583-615). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-63516-3_15
Lindauer, M. T., van Rijn, J. N., & Kotthoff, L. (2018). The Algorithm Selection Competition Series 2015-17. Advance online publication. https://arxiv.org/abs/1805.01214v1
Lindauer, M., & Hutter, F. (2018). Warmstarting of Model-Based Algorithm Configuration. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (pp. 1355-1362). (Proceedings of the AAAI Conference on Artificial Intelligence). AAAI Press/International Joint Conferences on Artificial Intelligence. https://arxiv.org/abs/1709.04636v3
Wagner, M., Lindauer, M., Mısır, M., Nallaperuma, S., & Hutter, F. (2018). A case study of algorithm selection for the traveling thief problem. Journal of heuristics, 24(3), 295-320. https://doi.org/10.1007/s10732-017-9328-y

2017


Biedenkapp, A., Lindauer, M., Eggensperger, K., Hutter, F., Fawcett, C., & Hoos, H. H. (2017). Efficient Parameter Importance Analysis via Ablation with Surrogates. In Proceedings of the AAAI Conference on Artificial Intelligence https://doi.org/10.1609/aaai.v31i1.10657
Hutter, F., Lindauer, M., Balint, A., Bayless, S., Hoos, H., & Leyton-Brown, K. (2017). The Configurable SAT Solver Challenge (CSSC). Artificial intelligence, 243, 1-25. https://doi.org/10.1016/j.artint.2016.09.006
Lindauer, M., Hutter, F., Hoos, H. H., & Schaub, T. (2017). AutoFolio: An Automatically Configured Algorithm Selector (Extended Abstract). In C. Sierra (Ed.), International Joint Conference on Artificial Intelligence (IJCAI 2017) (pp. 5025-5029). AAAI Press/International Joint Conferences on Artificial Intelligence. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjo2uHc_87qAhVpzMQBHf2lDTwQFjABegQIAxAB&url=https%3A%2F%2Fwww.ijcai.org%2FProceedings%2F2017%2F0715.pdf&usg=AOvVaw1ART0bWLbCU4uLc4oV19yv
Lindauer, M. T., van Rijn, J. N., & Kotthoff, L. (2017). Open Algorithm Selection Challenge 2017 Setup and Scenarios. http://proceedings.mlr.press/v79/lindauer17a/lindauer17a.pdf
Wagner, M., Friedrich, T., & Lindauer, M. (2017). Improving local search in a minimum vertex cover solver for classes of networks. In 2017 IEEE Congress on Evolutionary Computation (CEC): Proceedings (pp. 1704-1711). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/cec.2017.7969507

2016


Bischl, B., Kerschke, P., Kotthoff, L., Lindauer, M., Malitsky, Y., Fréchette, A., Hoos, H., Hutter, F., Leyton-Brown, K., Tierney, K., & Vanschoren, J. (2016). ASlib: A benchmark library for algorithm selection. Artificial intelligence, 237, 41-58. https://doi.org/10.1016/j.artint.2016.04.003
Lindauer, M., Bergdoll, R. D., & Hutter, F. (2016). An Empirical Study of Per-instance Algorithm Scheduling. In P. Festa, M. Sellmann, & J. Vanschoren (Eds.), Learning and Intelligent Optimization (pp. 253-259). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 10079 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-50349-3_20
Lindauer, M., Hoos, H., Leyton-Brown, K., & Schaub, T. (2016). Automatic construction of parallel portfolios via algorithm configuration. Artificial intelligence, 244, 272-290. https://doi.org/10.1016/j.artint.2016.05.004
Manthey, N., & Lindauer, M. (2016). SpyBug: Automated Bug Detection in the Configuration Space of SAT Solvers. In D. Le Berre, & N. Creignou (Eds.), Theory and Applications of Satisfiability Testing – SAT 2016 (pp. 554-561). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 9710). Springer Verlag. https://doi.org/10.1007/978-3-319-40970-2_36

2015


Albrecht, S. V., Beck, J. C., Buckeridge, D. L., Botea, A., Caragea, C., Chi, C. H., Damoulas, T., Dilkina, B., Eaton, E., Fazli, P., Ganzfried, S., Giles, C. L., Guillet, S., Holte, R., Hutter, F., Koch, T., Leonetti, M., Lindauer, M., Machado, M. C., ... Zheng, Y. (2015). Reports on the 2015 AAAI Workshop Series. AI magazine, 36(2), 90-101. https://doi.org/10.1609/aimag.v36i2.2590
Falkner, S., Lindauer, M., & Hutter, F. (2015). SpySMAC: Automated Configuration and Performance Analysis of SAT Solvers. In M. Heule, & S. Weaver (Eds.), Theory and Applications of Satisfiability Testing – SAT 2015 (pp. 215-222). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 9340). Springer Verlag. https://doi.org/10.1007/978-3-319-24318-4_16
Hutter, F., Lindauer, M., & Malitsky, Y. (2015). Preface. In Algorithm configuration: papers presented at the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. vii). (AAAI Workshop - Technical Report).
Lindauer, M., Hoos, H. H., Schaub, T., & Hutter, F. (2015). Auto folio: Algorithm configuration for algorithm selection. In Algorithm Configuration: papers presented at the Twenty-Ninth AAAI Conference on Artificial Intelligence (pp. 9-15). (AAAI Workshop - Technical Report). AI Access Foundation.
Lindauer, M., Hoos, H. H., Hutter, F., & Schaub, T. (2015). AutoFolio: Algorithm Configuration for Algorithm Selection. In AAAI Workshop: Algorithm Configuration https://dblp.org/db/conf/aaai/aconfig2015.html#LindauerHHS15
Lindauer, M. T., Hoos, H., Hutter, F., & Schaub, T. (2015). AutoFolio: An Automatically Configured Algorithm Selector. Journal of Artificial Intelligence Research, 53, 745-778. https://doi.org/10.1613/jair.4726
Lindauer, M., Hoos, H. H., & Hutter, F. (2015). From Sequential Algorithm Selection to Parallel Portfolio Selection. In C. Dhaenens, L. Jourdan, & M.-E. Marmion (Eds.), Learning and Intelligent Optimization (pp. 1-16). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8994). Springer Verlag. https://doi.org/10.1007/978-3-319-19084-6_1

2014


Hoos, H., Kaminski, R., Lindauer, M., & Schaub, T. (2014). aspeed: Solver scheduling via answer set programming. Theory and Practice of Logic Programming, 15(1), 117-142. https://doi.org/10.1017/s1471068414000015
Hoos, H., Lindauer, M., & Schaub, T. (2014). claspfolio 2: Advances in Algorithm Selection for Answer Set Programming. Theory and Practice of Logic Programming, 14(4-5), 569-585. https://doi.org/10.1017/S1471068414000210
Hoos, H. H., Kaminski, R., Lindauer, M., & Schaub, T. (2014). Solver Scheduling via Answer Set Programming. Computing Research Repository (CoRR), abs/1401.1024. https://dblp.org/db/journals/corr/corr1401.html#HoosKLS14
Hutter, F., López-Ibáñez, M., Fawcett, C., Lindauer, M., Hoos, H. H., Leyton-Brown, K., & Stützle, T. (2014). AClib: A Benchmark Library for Algorithm Configuration. In Learning and Intelligent Optimization (pp. 36-40). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 8426 LNCS). Springer Verlag. https://doi.org/10.1007/978-3-319-09584-4_4

2013


Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T., & Schneider, M. (2013). Ricochet Robots: A Transverse ASP Benchmark. In LPNMR (pp. 348-360) https://doi.org/10.1007/978-3-642-40564-8_35
Hoos, H. H., Kaufmann, B., Schaub, T., & Schneider, M. (2013). Robust Benchmark Set Selection for Boolean Constraint Solvers. In LION (pp. 138-152) https://doi.org/10.1007/978-3-642-44973-4_16